introspect technology

Memory Interface Testing

July 2024

Agenda

- 1. About Introspect Technology
- 2. Scope of This Presentation
- 3. ATE on Bench Architecture
- 4. Memory and Component Testing
- 5. Host Controller Testing
- 6. Protocol Analyzer and Interposer Systems
- 7. SV6E-X SidebandBus Controller and Tester
- 8. Summary

About Introspect Technology

Introspect Makes Tools for Engineers

ADDRESSING GAP IN TEST EQUIPMENT AVAILABILITY

- Bench-like accuracy and precision
- EDA style scripting
- Software-style regression and versioning Designation
- ATE-like speed
- Highly parallel
 - Designed for automation

We Test Electronic Interfaces...

IMAGE SENSORS

MOTION SENSORS, MICROPHONES, **SPEAKERS**

> **APPLICATIONS** PROCESSORS

IR RANGE


POWER MANAGEMENT ICs

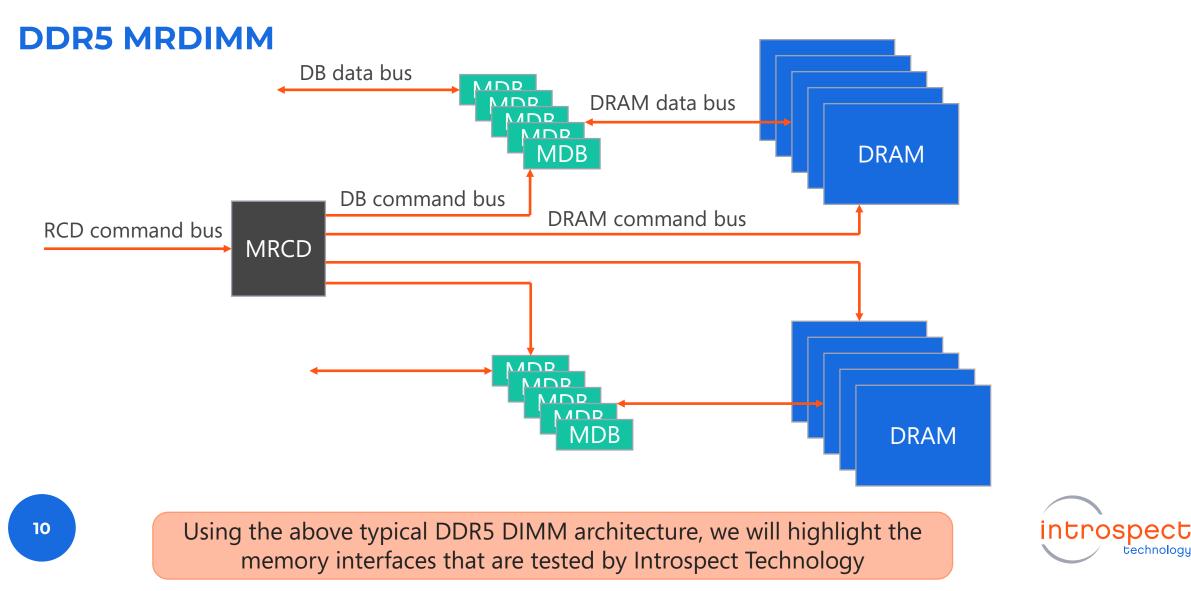
MEMORIES

RFICs

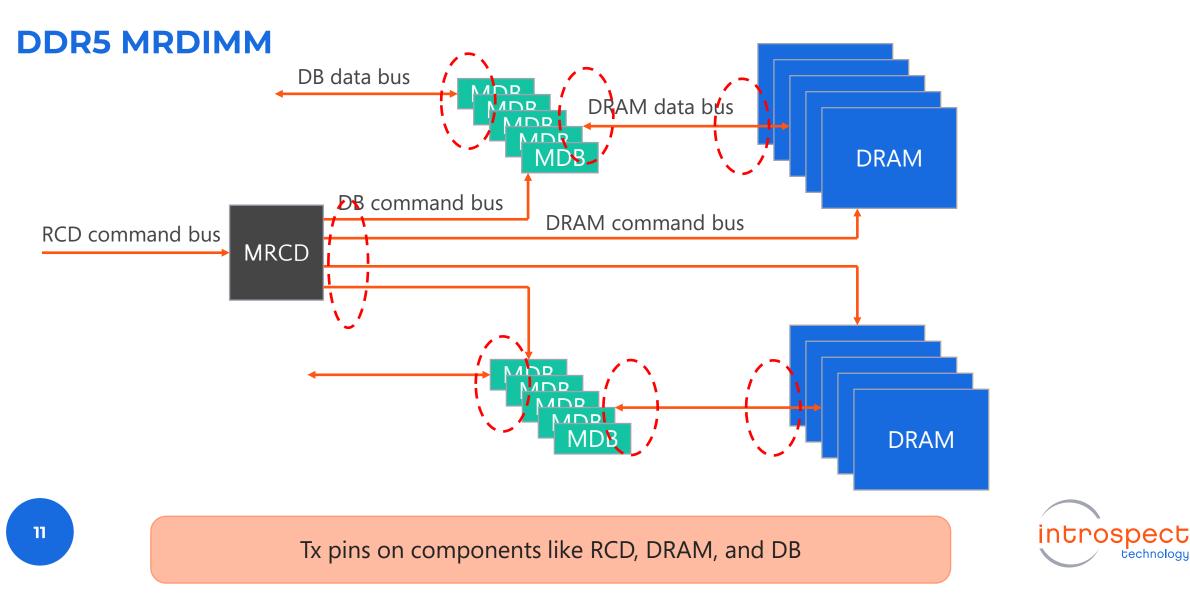
We Act as a Link Partner / Exerciser...

And We Probe a Live System

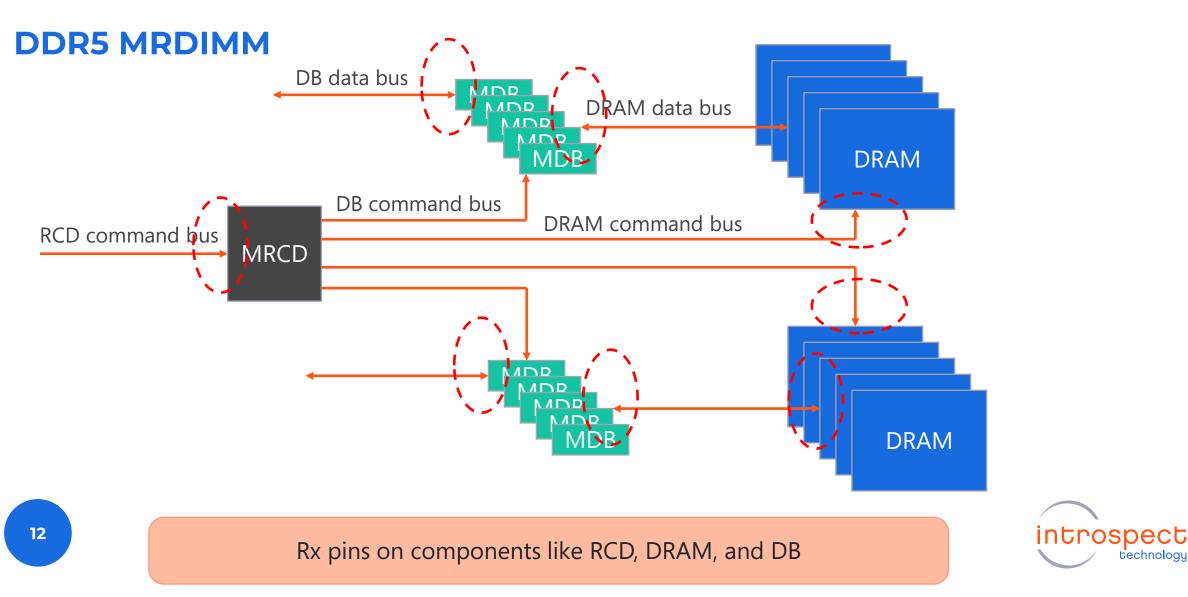
introspect technology


Company Facts

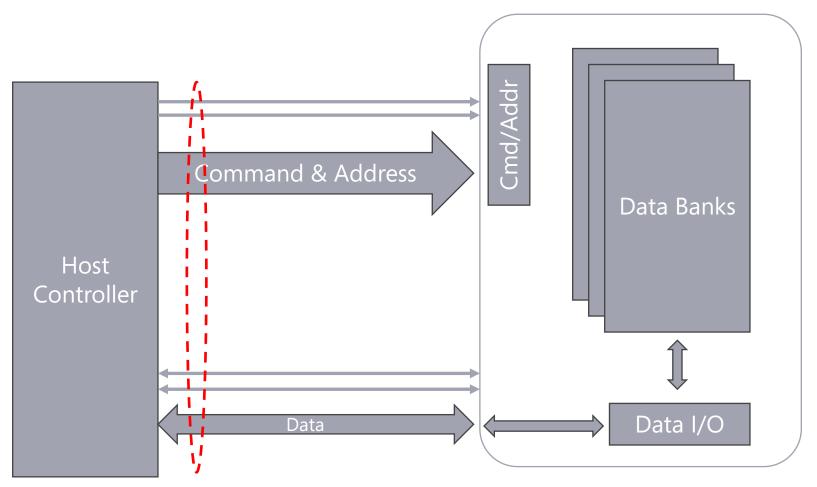
- Founded in 2012
- Offices in Montréal, Québec and Vancouver, British Columbia
- Global, outsourced sales and distribution channel
- Manufacturer of capital equipment used in the **design validation** and **mass production testing** of electronic components that contain high-speed communications interfaces
 - Smartphones
 - Personal computers and tablets
 - Augmented reality headsets
 - Automotive systems and self-driving systems
 - Data center server racks
 - Medical equipment


Scope of This Presentation

Validating Memory Interfaces

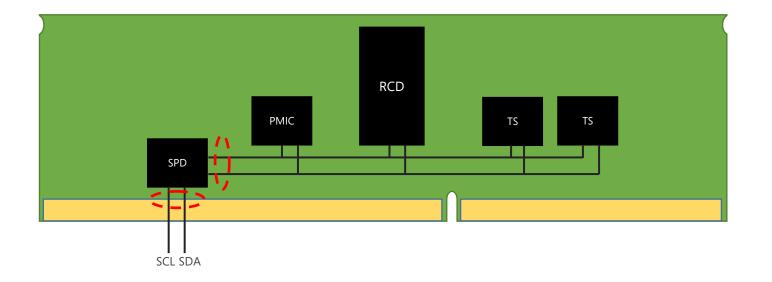


technologi


Transmitter Interfaces

Receiver Interfaces

Validating Controller Components



Tx and Rx pins on memory controller devices

13

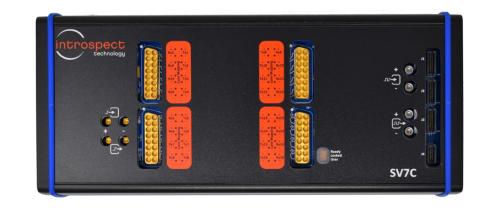
Validating SidebandBus Components

All I2C/I3C interfaces on both the host bus and the local bus

14

ATE on Bench Architecture

Really Replace the ATE for DDR Testing



Complete training, shmooing capability on all pins

SV7C-17 ATE on Bench Developed for ddr/lpddr/gddr interface testing

ATE on Bench

DEVELOPED FOR DDR/LPDDR/GDDR INTERFACE TESTING

CAPTURE AND ANALYSIS

Eye diagrams and BER Parallel digital capture Analog capture

16 RX CHANNELS

Per lane phase contro Per lane voltage threshold

16 ALIGNED RECEIVERS

capable of measuring tx skew

AUXILIARY GPIO

Provides a host ofsecondary controls (e.g. triggers, flags)

16 TX CHANNELS

___+ ∿-} ⊙

+ (0) " []-+ (0)

SV7C

Per lane jitter and noise injection Per lane slew rate settings Per lane skew control Per lane voltage control

16 PATTERN GENERATORS

Aligned on power up Protocol-configurable

ATE on Bench

DEVELOPED FOR DDR/LPDDR/GDDR INTERFACE TESTING

CAPTURE AND ANALYSIS

Eye diagrams and BER Parallel digital capture Analog capture

16 RX CHANNELS

Per lane phase control Per lane voltage threshold

16 ALIGNED RECEIVERS

capable of measuring tx skew

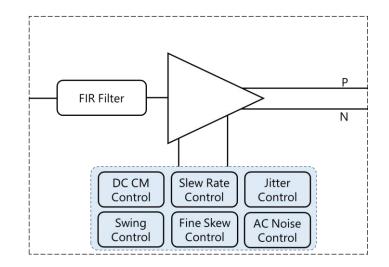
AUXILIARY GPIO

Provides a host of
secondary controls (e.g. triggers, flags)

16 TX CHANNELS

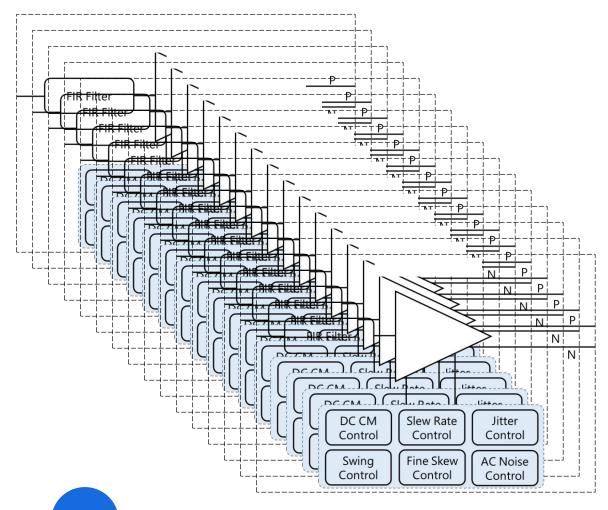
___+ ∿-} ⊙

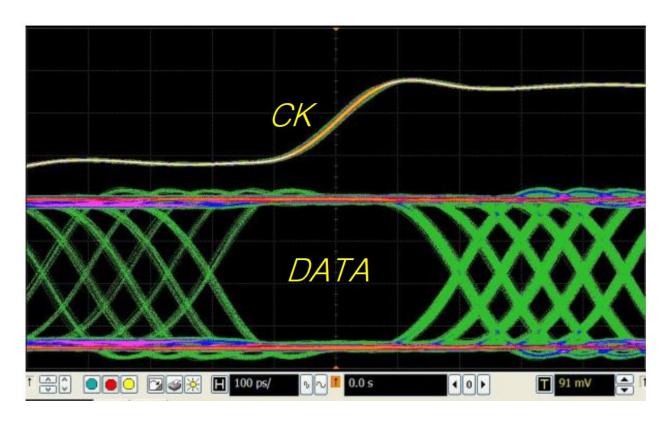
SV7C


Per lane jitter and noise injection Per lane slew rate settings Per lane skew control Per lane voltage control

16 PATTERN GENERATORS

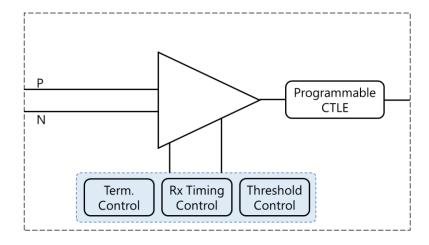
Aligned on power up Protocol-configurable


Single-Lane Pin Electronic Driver



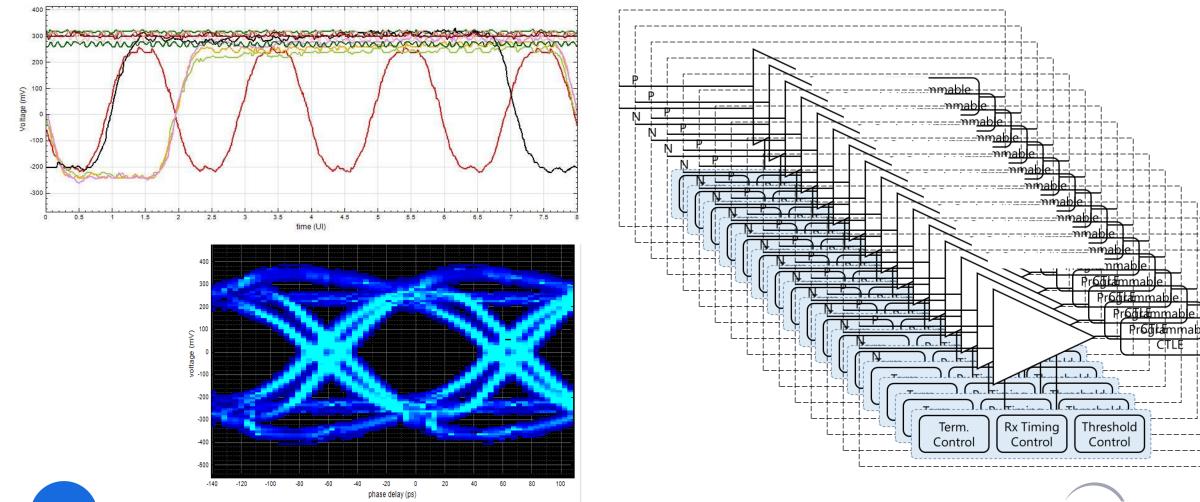
Clock Synthesizer

All Drivers Work as a Bus



introspect technology

Can produce realistic DDR/LPDDR waveform shapes & skews

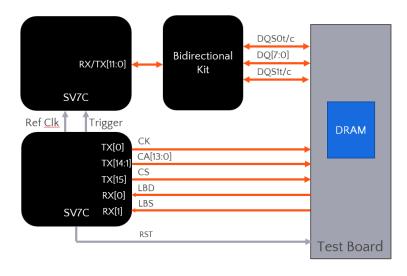

Single-Lane Pin Electronic Receiver

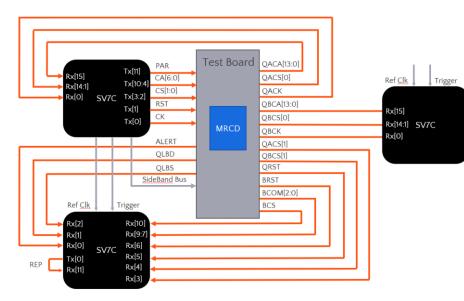
22

All Receivers Work as a Bus

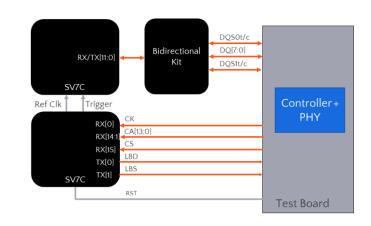
Can capture complete bus behavior (digital and analog)

introspect

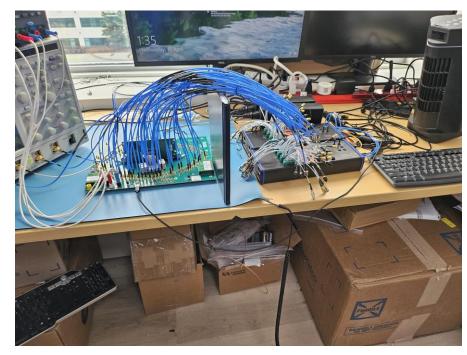

Size Illustration (DDR and GDDR Component or PHY Test)



Typical DDR5 Test Benches


DRAM

MRCD/RCD



CONTROLLER

Evolution to HS Memory ATE – M Series

DDR5 RDIMM Setup

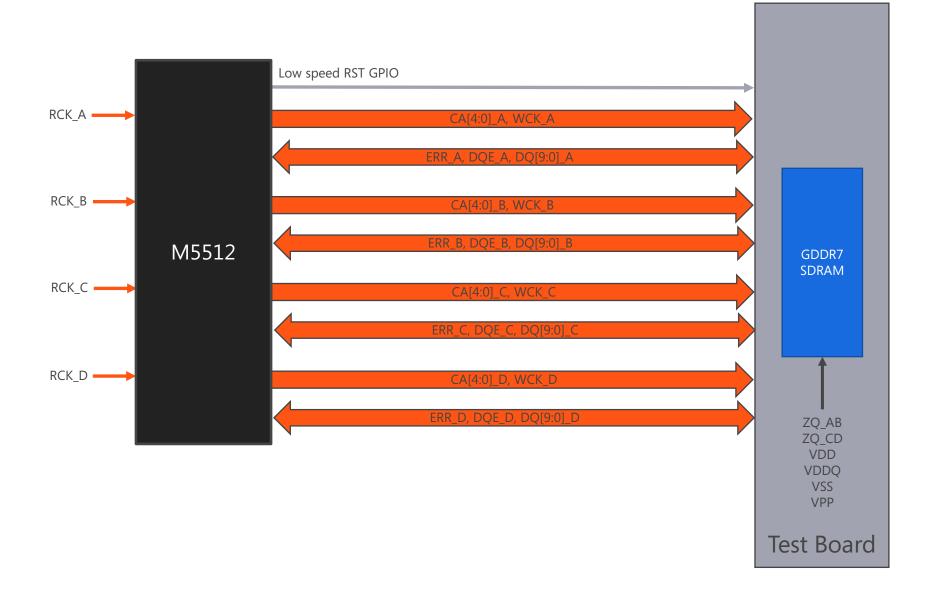
Enclosed System to Hide the Cables and Increase Performance

M Series Variants

COMPONENT TESTER

World-first PAM3 interop test on February 7, 2024 (with leading memory maker)

COMPONENT TESTER



MODULE TESTER

Example: GDDR7 4-Channel System

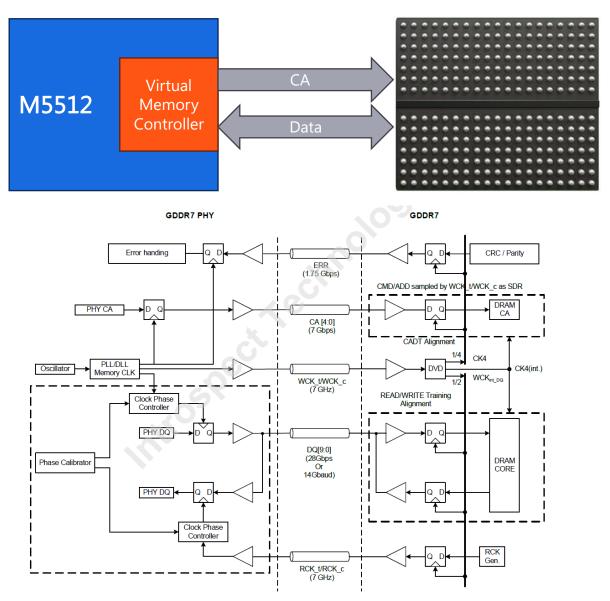
introspect technology

28

Memory and Component Testing

Memory Device Testing

PHY LEVEL TESTING


Adjustable voltage and timing parameters on all pins (including jitter injection)

FUNCTIONAL TESTING

Protocol-compliant stimulus for all memory commands

FUNCTIONAL STRESS TESTING

What are the limits of the device? Verify functional behaviour while pushing command timings, data rate and other parameters out of spec

Memory Controller Software (GD7 Example)

⊥ ⊺ ⊕	
\bigcirc	

<mark>∔†‡</mark> DramPhyParams

 \vee DDR

- 🚕 LpDramController
- ¦¦¦ LpDramParams

🛷 DramController

+++ DramParams

- **¦**¦¦ LpPhyParams
- <mark>∔¦</mark>+ PhyParams
- 希 RcdController
- ¦†¦ RcdParams
- 📌 RdimmController
- 🚕 GddrController
- ∔†‡ GddrParams
- <mark>∔</mark>†↓ GddrPhyParams
- ^{∩100} DdrDataCapture
- E DdrDbCommandPa...
- 📃 DdrDramCommand...

Components

gddrChannelLabeling1

📌 gddrController1

+++ gddrPhyParams1

pam3Protocol

+++ gddrParams1

gddrController1

÷.

	deviceSerialNum	1234	
	trainingDataFolderPath		
	memBusesUnderTest	ABCD	\checkmark
	phyParams	gddrPhyParams1	\checkmark
	gddrParams	gddrParams1	\checkmark
	rxChannelLabeling	gddrChannelLabeling1	\checkmark
	txChannelLabeling	gddrChannelLabeling1	\checkmark
	calibrateZq	True	\sim
	trainingDataCaPhase	auto	\checkmark
	caPhaseTrainingNumStepsPerUi	32	
	trainingDataCaVref	auto	\checkmark
	caVrefTrainingStepSize	1	
	trainingDataReadVref	auto	\checkmark
	trainingDataReadPam3EyeOffset	auto	\checkmark
	trainingDataReadPhase	auto	\checkmark

Procedure

2

<

1 gddrController1.run()

- 3 #Sending MRS command...
- 4 gddrController1.sendMrs(13,128)

Memory Controller Software (GD7 Example)

⊥ ⊺ ⊕	
(D	

C

 \vee DDR

+++ DramPhyParams 🛹 LpDramController

🛷 DramController

+++ DramParams

- +++ LpDramParams
- +++ LpPhyParams
- +++ PhyParams
- ✤ RcdController
- +++ RcdParams
- RdimmController
- 📌 GddrController
- +++ GddrParams
- +++ GddrPhyParams
- 0100 DdrDataCapture
- DdrDbCommandPa...
- E DdrDramCommand...

Components

gddrChannelLabeling1

📌 gddrController1

+++ gddrPhyParams1

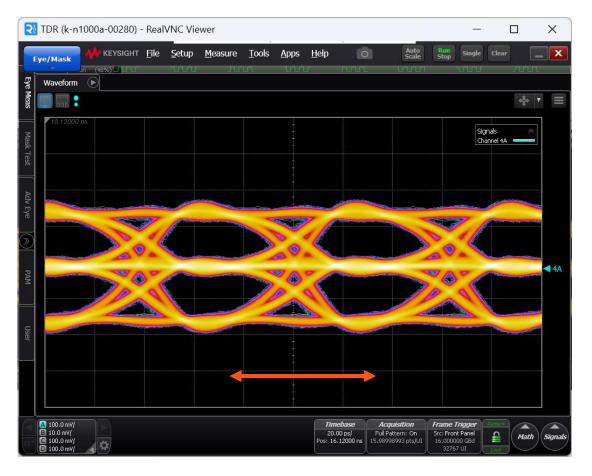
pam3Protocol

+++ gddrParams1

÷.

gddrController1

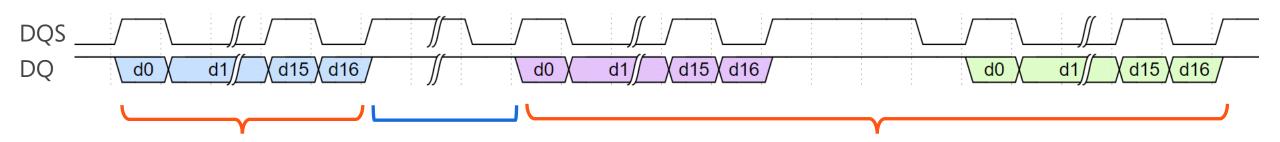
1234 deviceSerialNum trainingDataFolderPath memBusesUnderTest ABCD phyParams gddrPhyParams1 gddrParams gddrParams1 rxChannelLabeling gddrChannelLabeling1 txChannelLabeling gddrChannelLabeling1 \sim calibrateZq \checkmark True trainingDataCaPhase \checkmark auto caPhaseTrainingNumStepsPerUi 32 trainingDataCaVref auto caVrefTrainingStepSize 1 trainingDataReadVref auto trainingDataReadPam3EyeOffset auto \checkmark trainingDataReadPhase auto


 \checkmark

	gddrPhyParams1	
_	dataRate	16000.0
Pro	caVLow	250.0
gd	dqVLow	250.0
#S gd	wckVLow	200.0
	caVHigh	650.0
gu	dqVHigh	650.0
	rxVrefInitialValue	600.0
	wckVHigh	600.0

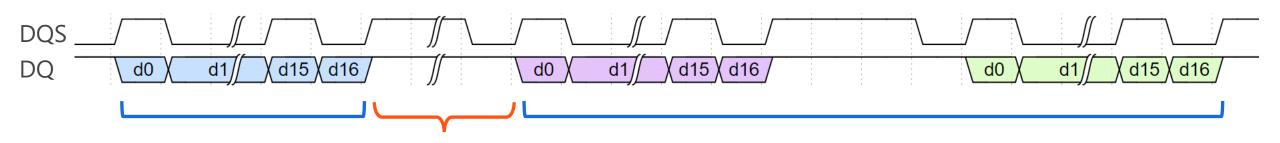
gddrParams1	<
readLatency	19
writeLatency	10
writeCrc	False 🗸
readCrc	False 🗸
cabi	False 🗸
vrefDqlInitialValue	100
vrefDqhInitialValue	100
wrCrc2Err	10
dqeRL	1
dqDqeRckDriverStrength	term400hm 🗸
dqDqeTermination	termOff 🗸
errDriverStrength	term400hm 🗸
calUpd	allEnabled 🗸
sev2Err	False 🗸
dqeHighZ	False 🗸

Driver Performance – 32 Gbps



Pattern Generation Architecture

HOLD PATTERNS DRIVE IDLE STATES IN BETWEEN PATTERN SEQUENCES

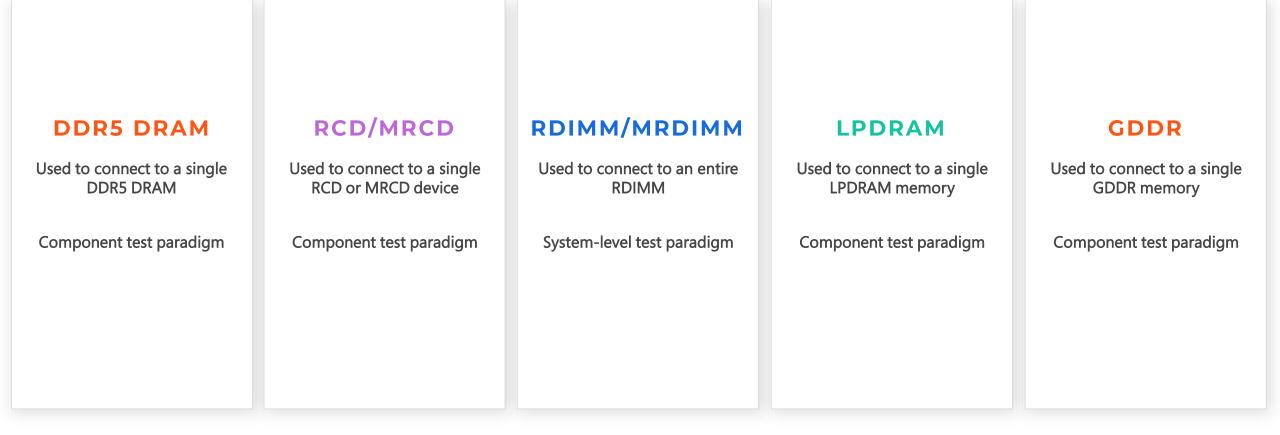

busPatternTimeline.addPatterns(burstPattern,1)
busPatternTimeline.endWithPattern('HoldPattern')

busPatternTimeline.addPatterns(burstPattern1,1)
busPatternTimeline.addPatterns(idlePattern,1)
busPatternTimeline.addPatterns(burstPattern2,1)
busPatternTimeline.endWithPattern('HoldPattern')

Pattern Generation Architecture

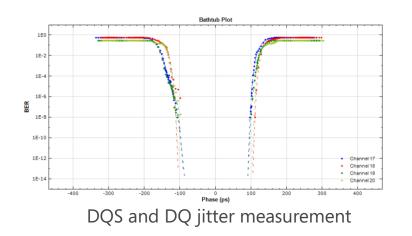
IN BETWEEN PATTERN SEQUENCES...

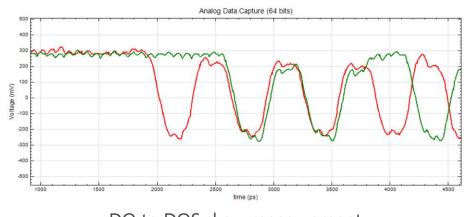
Start jitter injection on WCK...


Modify signal voltages levels on CA...

Control timings between DQ signals...

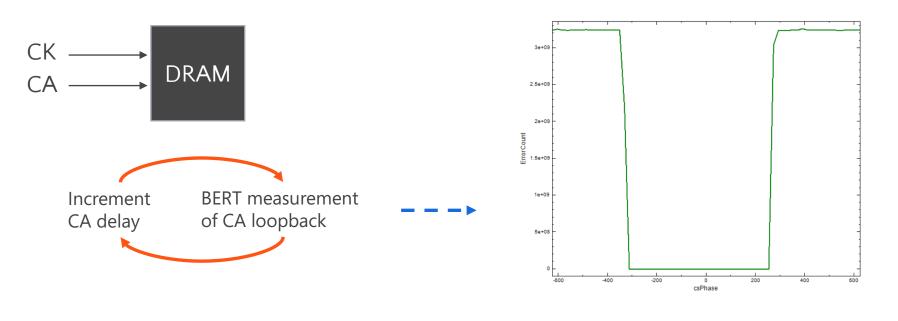
Change slew rate on DQ signals...


Tuned Virtual Memory Controllers

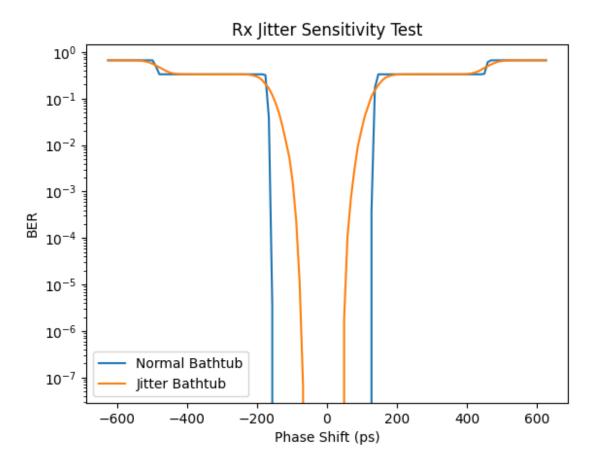


Transmitter Characterization

- Clock to data skew measurement
 - DQS to DQ
 - CK to CA
 - BCK to BCOM
- BERT measurements on clock and data
 - Long duration error rate tests
 - Eye diagrams
 - Jitter measurements
 - Slew rate measurements

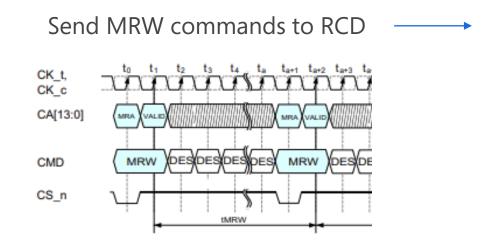


DQ to DQS skew measurement


Receiver Characterization

- Requires support of different loopback/training modes or uses write and read commands
- Measure horizontal and vertical eye opening at receiver while applying different stressors
 - Jitter sensitivity clock to data skew
 - Voltage sensitivity
 - Stressed eye

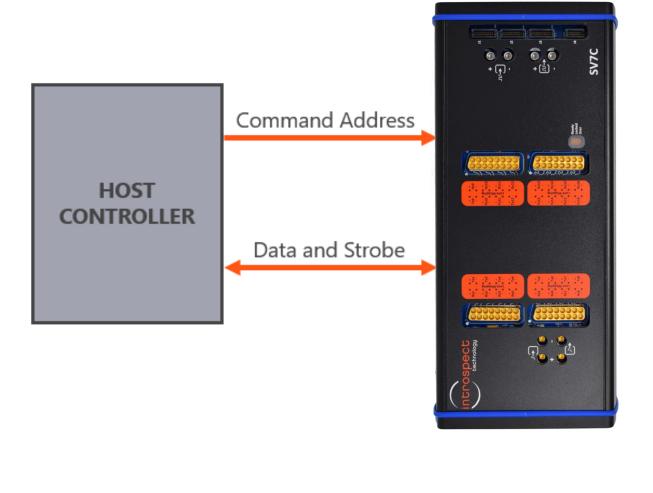
Example Receiver Stress Test Result

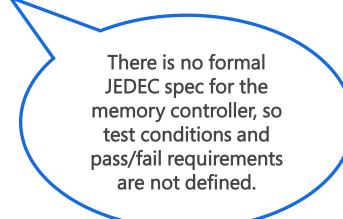


Functional Testing

- Perform pass/fail checks of device behaviour under normal test conditions
- There is a wide variety of tests in this category, that can be roughly categorized as follows
 - Functional mode tests E.g. Training modes, power down, DDR/SDR operation
 - Input spec checks E.g. Mode register writes, MPC commands
 - Output spec checks E.g. QCS operation, output inversion, Qx output delay

MODE REGISTER WRITE TEST EXAMPLE

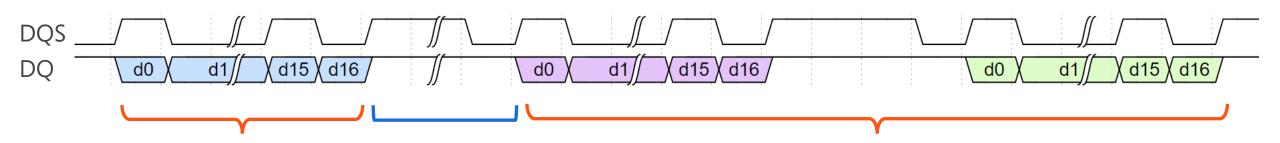

Read RW contents over sideband busPASS if read and write data matchFAIL if no match



Host Controller Testing

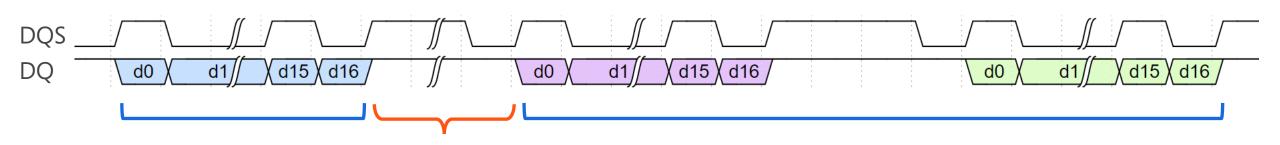
Controller Testing

- Supports TX testing of command and data bus
 - Clock to data skew measurements
 - Eye diagrams, BER measurements etc...
- Supports RX testing of data bus using flexible pattern features and analog impairment controls. Requires loopback outputs, built-in error counters, or similar test mode in the host controller.



Pattern Generation

HOLD PATTERNS DRIVE IDLE STATES IN BETWEEN PATTERN SEQUENCES


busPatternTimeline.addPatterns(burstPattern,1)
busPatternTimeline.endWithPattern('HoldPattern')

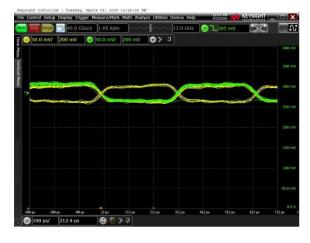
busPatternTimeline.addPatterns(burstPattern1,1)
busPatternTimeline.addPatterns(idlePattern,1)
busPatternTimeline.addPatterns(burstPattern2,1)
busPatternTimeline.endWithPattern('HoldPattern')

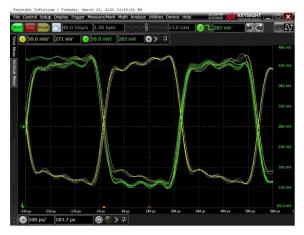
Pattern Generation

IN BETWEEN PATTERN SEQUENCES...

Start jitter injection

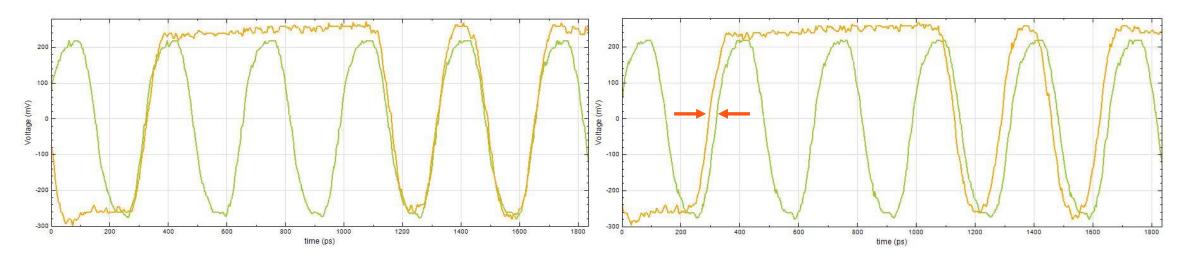
Modify signal voltages levels


Control timings between signals


Change slew rate

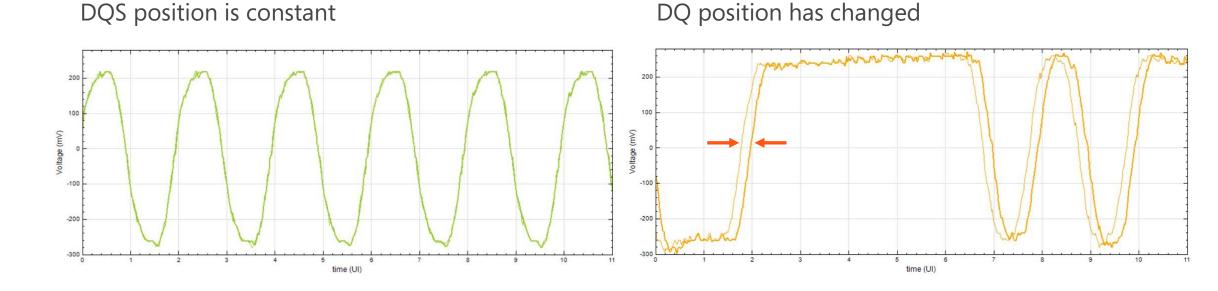
Timing and Voltage Control

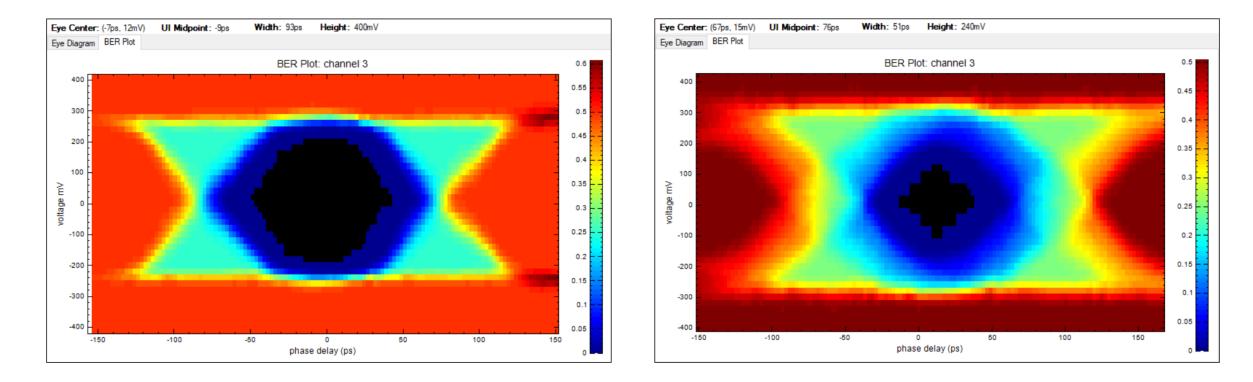
PER LANE PHASE, AMPLITUDE AND COMMON MODE SETTINGS



Transmitter Skew Measurement

MEASURE CHANNEL TO CHANNEL SKEW


Detect and measure DQ to DQS delay

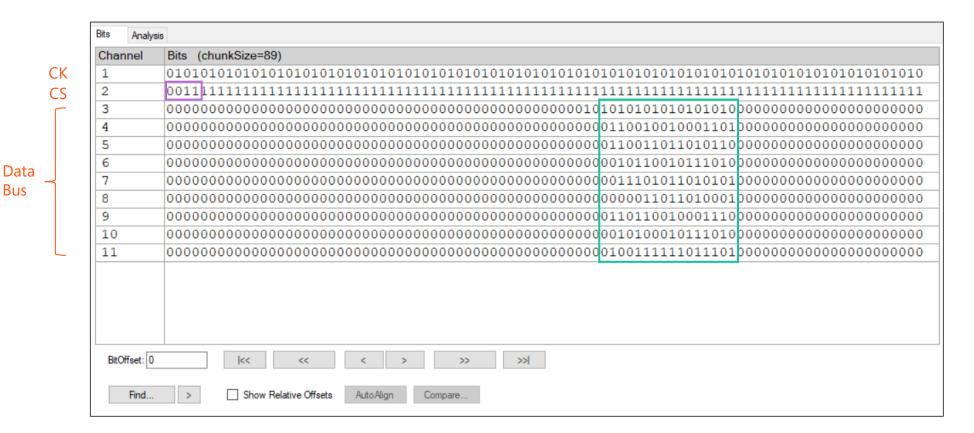

Transmitter Skew Measurement

VIEW PATTERN ALIGNMENT ON A SINGLE CHANNEL OVER TIME

BERT Measurements

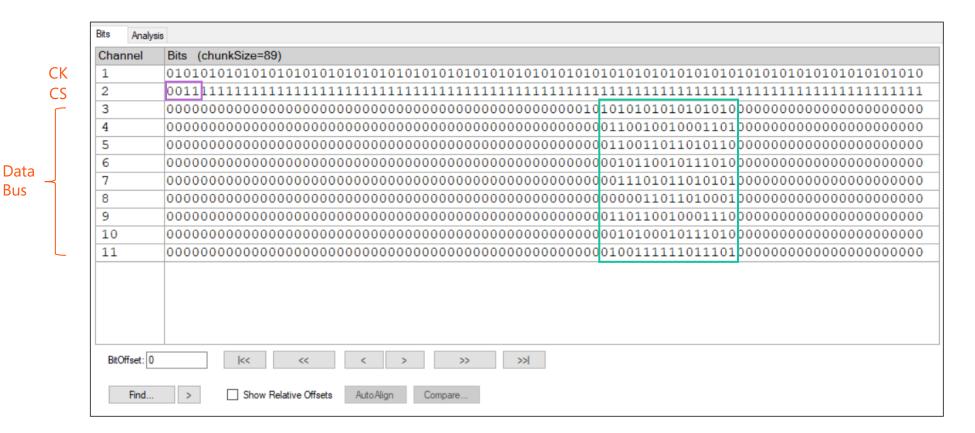
Eye diagrams across different transmitter slew rate settings

Burst Mode Digital Capture

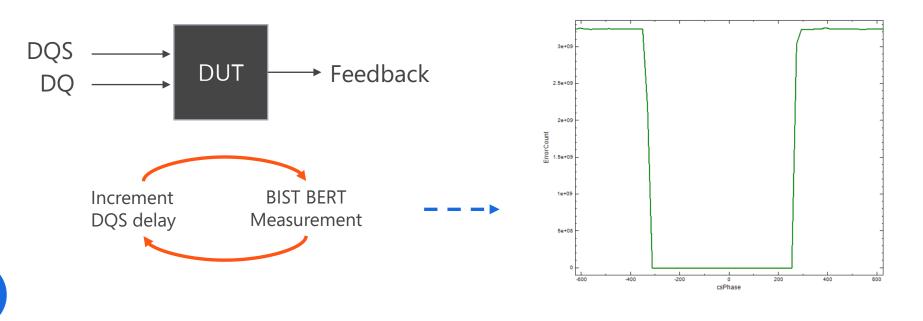

CAPTURE AND FILTER OUT BURST DATA

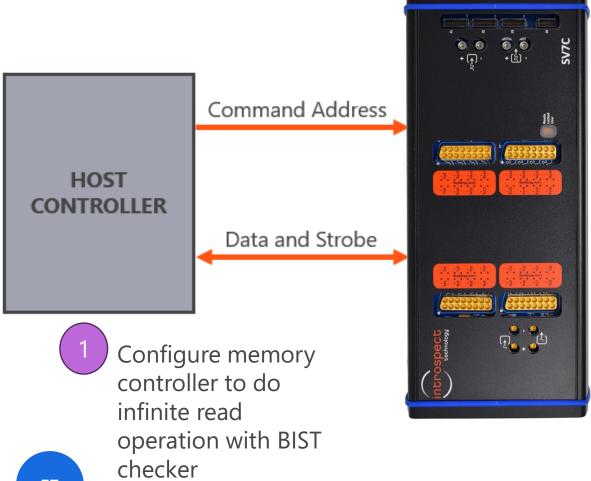
Channel	Burst#	Offset	Status	Bits
1				
	0	2	good	10101010101010
	1	66	good	10101010101010
	2	130	good	10101010101010
	3	194	good	10101010101010
	4	258	good	10101010101010
2				
	0	2	good	0111011000110000
	1	66	good	0101000010100100
	2	130	good	0011001010110100
	3	194	good	0111011000110000
	4	258	good	0101000010100100

Triggered Digital Capture


ONE-SHOT TRIGGER ON COMMAND AND CAPTURE DATA BUS IN PARALLEL

Continuously Triggered Capture


KEEP TRIGGERING ON COMMANDS (PROTOCOL ANALYZER)


Receiver Characterization

- Requires support of checking errors within the memory controller component
- Measure horizontal and vertical eye opening at receiver while applying different stressors
 - Jitter sensitivity clock to data skew
 - Voltage sensitivity
 - Stressed eye

Receiver Characterization Using BIST

- Two-step receiver characterization based on memory controller BIST mode
- In the first step, the BIST is enabled to perform infinite write/read operations or infinite read operations
- In the second step, the SV7C is programmed in Python to prepare the read response data and then transmit it

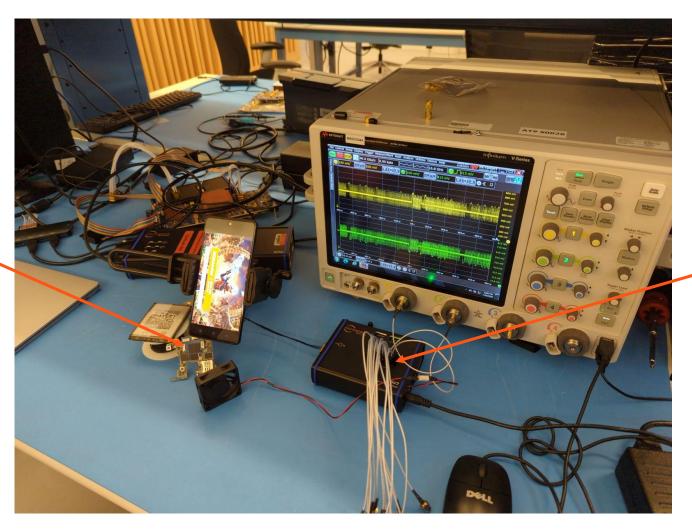
Pre-program read responses and read timings inside SV7C-17 and send the data with impairments

Protocol Analyzer + Interposer Systems

DDR5/LPDDR5 Protocol Analyzer

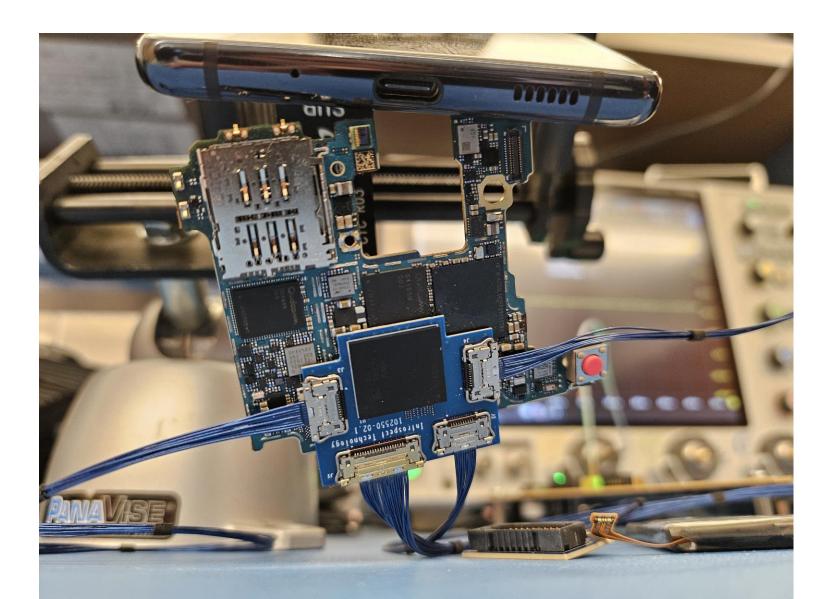

Same exerciser hardware but with a license for protocol analyzer

SV7

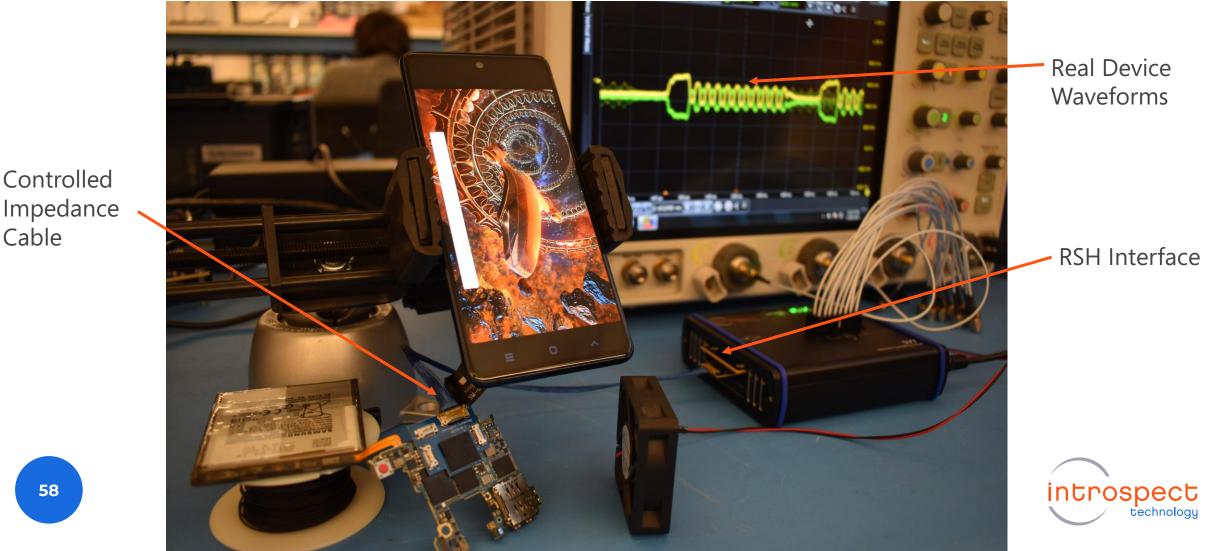

Heads (Up to 32 Channels)

Remote Sampling

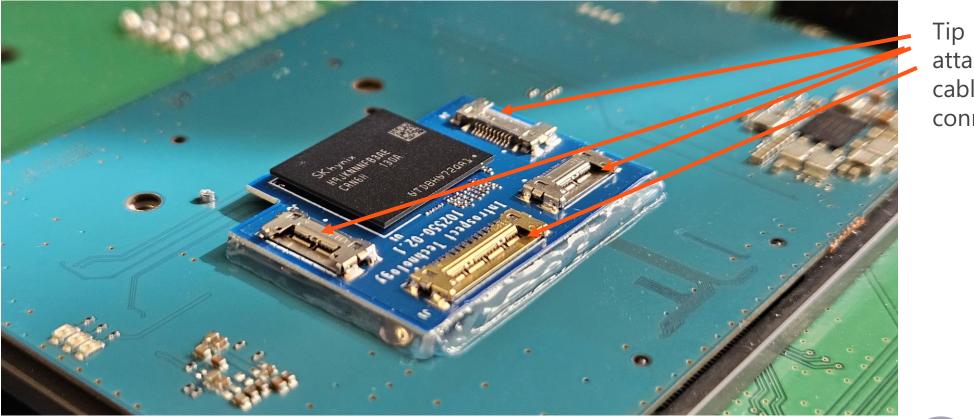
DDR5/LPDDR5 Protocol Analyzer


Interposer system (example shown is PoP LPDDR5)

Remote Sampling Head (multi-channel <u>active probe</u>) connected to oscilloscope



Zoomed View With All Pins Probed



Probed Waveform Visible on Scope

Impedance Cable

Example Evaluation Board

Tip attachment cable connectors

DDR5/LPDDR5 Protocol Analyzer FULL PROTOCOL ANALYSIS

(Open Result F	Folder]					1						
Command Selecti	on			1		Command#		Burst#	1.071	Name	BA	BG	С		
Go To: Prev	Next Co	mmand#	~			0	8		ACT1 MRR		A				
	Next CO	mmanu#	~			2	88		ACT2						
Command #2: De	ails					3	256		ACT2		8				
ame: ACTIVATE-	2					4	280		ACT2		, i i i i i i i i i i i i i i i i i i i				
Bits:	Argur		Value			5	384		RD		A		15		
CS CA23456		12				6	408		PRE		А				
11 1100000						7	416		RD		8		15		
1 0101000						🛛 Help: Timing	Definitions							×	
4 (ACT2) 48.0 10.0 - 5 (RD) 74.0 36.0 - 6 (PRE) 80.0 84.0 1.40e+05		nCK nCK nCK	tRRD tRCD tRAS		Command #0: Tim	3 ings Value	Min	256 Max Ur		g Definitions					
							2 (ACT2)	20.0	-	8.0 nCK					
						tAAD tRRD tRCD		20.0 Delay be Delay be Delay be	- etween AC etween ACT	8.0 nCK T2 and ACT1 T2 and ACT2 (dif 2 and any read/v	tAAD Descriptio ff. bank) write/maskedW		nand		
						tAAD tRRD tRCD tRAS	2 (ACT2)	20.0 Delay be Delay be Delay be	tween AC tween AC twen ACT tween ACT	8.0 nCK T2 and ACT1 T2 and ACT2 (dif	tAAD Descriptio ff. bank) write/maskedW		nand		
						tAAD tRRD tRCD tRAS 30	2 (ACT2)	20.0 Delay be Delay be Delay be	tween AC tween AC tween AC tween AC MRW1	8.0 nCK T2 and ACT1 T2 and ACT2 (dif 2 and any read/v	tAAD Descriptio ff. bank) write/maskedW		nand		
						tAAD tRRD tRCD tRAS 30 31	2 (ACT2)	20.0 Delay be Delay be Delay be	tween AC tween AC tween AC tween AC MRW1 MRW2	8.0 nCK T2 and ACT1 T2 and ACT2 (dif 2 and any read/v	tAAD Descriptio ff. bank) write/maskedW		nand		
						tAAD tRRD tRCD tRAS 30	2 (ACT2)	20.0 Delay be Delay be Delay be	tween AC tween AC tween AC tween AC MRW1	8.0 nCK T2 and ACT1 T2 and ACT2 (dif 2 and any read/v	tAAD Descriptio ff. bank) write/maskedW		nand		

introspect technology

SV6E-X SidebandBus Controller and Tester

E SERIES

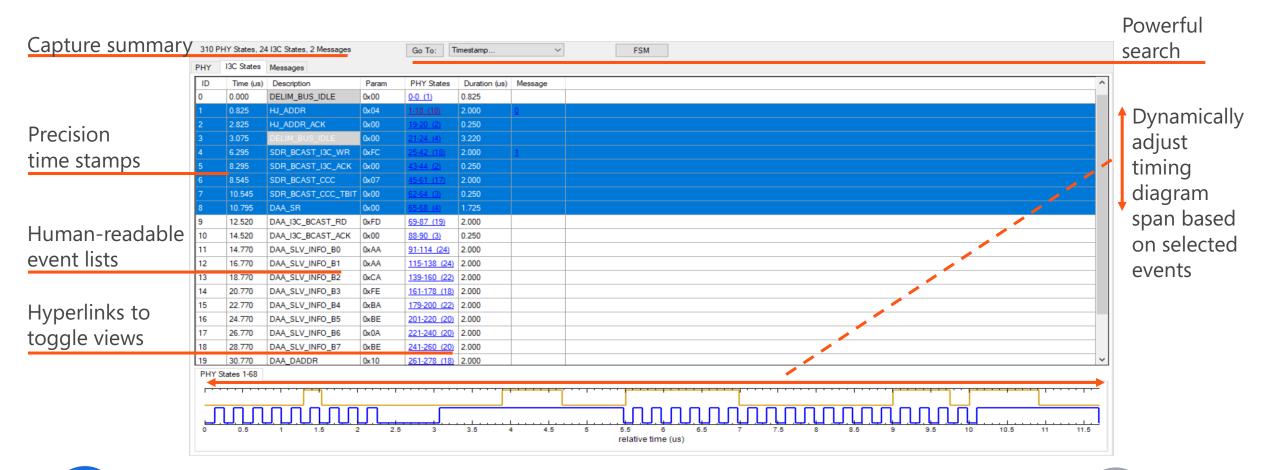
SV6E-X – I3C License

Mid-Frequency Digital Test Module

OVERVIEW

Multi-Purpose Protocol Exerciser, Protocol analyzer, real-time oscilloscope Can be licensed for different mid-frequency digital protocols (I3C shown here)

FEATURES


- Two banks of 10 channels each
- 200 MHz operating frequency
- Two programmable, high-current power supplies
- PurVue AnalyzerTM technology on any channel

BENEFITS

- Supports I3C, I3C Basic, JESD403, RCD, PMIC, SPD Hub, DMTF, MCTP
- Enables high-performance testing compared to other solutions
- Replaces racks of bench equipment
 or PXI test systems

Detailed Protocol Analyzer View

introspect

Powerful Scripting and Logging

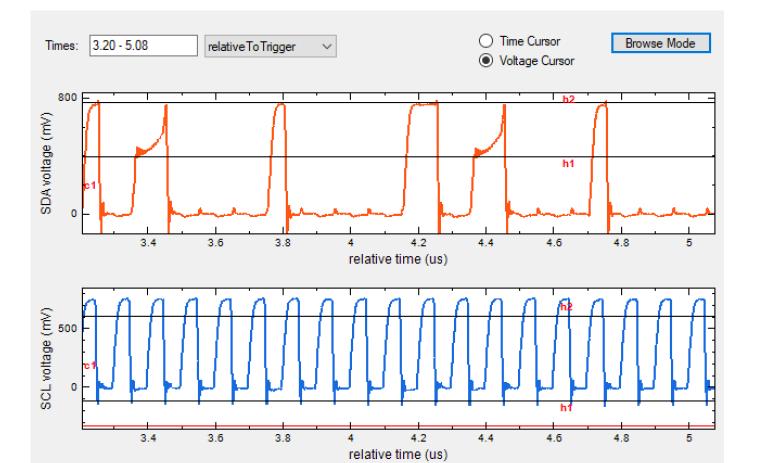
	File Edit IESP/MIPI_I3C_EXERCISER Wizards ControlPanels Tools Results Help	
	Params Log Results	
	Resetting all dynamic addresses on bus Assigning dynamic addresses No dynamic addresses were assigned during DAA Master DAA Table (0 entries)	~
Hot Join Example	SUCCESS: Offline slave device successfully joined the bus	
	8 Reading Bus Characteristics Register for slvAddr=8 Bus 0 Master : Read BCR as [6] from slvAddr 8	
liste way out Europeals	SUCCESS: IBI request was acknowledged by the master	
Interrupt Example	IBI regest was not acknowledged by the master	
	IBI reqest was not acknowledged by the master IBI reqest was not acknowledged by the master	
	Received the following interrupts	
Mastership Request Example	<pre>[{'interruptType': 'HJ', 'masterAcked': True, 'masterDisabledFuture': False}, {'interruptType': 'IBI', 'slaveAddr': 8, 'masterAcked': True, 'masterDisabledFuture': True, 'hasIbiPayload': False, 'ibiPayloadSize': 0, 'ibiPayload': None}] SUCCESS: Slave was able to become master</pre>	
	DAA Table (1 entries)	
	slvAddr=8, {'hasStaticAddr': False, 'provId': 1, 'bcr': 6, 'dcr': 0} Test finished	~
64	Run	

SidebandBus Controller Component

Components		sidebandBusController1 properties (class: SidebandBusController)
Components i3cBus i3cDataCapture i3cProtocol jedecSlaveDevice1 jedecSlaveDevice2 jedecSlaveDevice3 jedecSlaveParameters1 jedecSlaveParameters2 jedecSlaveParameters3 masterParams1 sidebandBusController1	startup State hid auto Init Bus pec Enabled master Mode Params bus code For Config	sidebandBusController1 properties (class: SidebandBusController) master 3 True False masterParams1 i3cBus # Define some names for the slave addresses:dtisByName = { 'SPD': 0b1010,
Add Remove Config		o "initializeBus" is part of "setup()" (and "update"). If "autoInitBus" is False, you will need to Test procedure after the call to "setup()". If you are using a slave Device component as w

Example of Set Bus Config

_		un_2021-03-26_1021 / i3c I3C States, 42 Messages	DataCaptur	e (i3cBus)			
Go T	To: Timestan	ıp ~	Times:	relativeToStart	~		FSM
PHY	I3C States M	essages					
ID	Time (us)	Description	Param	PHY States	Duration (us)	Message	^
27	499873.290	DELIM_BUS_IDLE	0×00	<u>298-310 (13)</u>	599993.320		
28	1099866.610	SDR_BCAST_I3C_WR	0xFC	<u>311-328 (18)</u>	20.010	<u>9</u>	
29	1099886.620	SDR_BCAST_I3C_ACK	0×00	<u>329-330 (2)</u>	2.500		
30	1099889.120	SDR_BCAST_CCC	0x0C	<u>331-348 (18)</u>	20.020		
31	1099909.140	SDR_BCAST_CCC_TBIT	0×01	<u>349-351 (3)</u>	2.500		
32	1099911.640	SDR_BCAST_WR_DATA	0x80	<u>352-368 (17)</u>	20.010		
33	1099931.650	SDR_BCAST_WR_TBIT	0×00	<u>369-370 (2)</u>	2.500		
34	1099934.150	DELIM_BUS_IDLE	0×00	<u>371-374 (4)</u>	29996.820		~
PHY S	tates 311-370						
			30 relat	ive time (us)	40		


Example of SETHID

		un_2021-03-26_1021 / i3c	:DataCaptur	e (i3cBus)			
Go T			Times:	relativeToStart	~		FSM
PHY	I3C States M	essages					
ID	Time (us)	Description	Param	PHY States	Duration (us)	Message	^
41	1129998.510	DELIM_BUS_IDLE	0x00	434-438 (5)	29913.890		
42	1159912.400	SDR_BCAST_I3C_WR	0xFC	439-456 (18)	20.010	<u>11</u>	
43	1159932.410	SDR_BCAST_I3C_ACK	0x00	<u>457-458 (2)</u>	2.510		
44	1159934.920	SDR_BCAST_CCC	0x61	<u>459-477 (19)</u>	20.010		
45	1159954.930	SDR_BCAST_CCC_TBIT	0x00	<u>478-480 (3)</u>	2.500		
46	1159957.430	SDR_BCAST_WR_DATA	0x06	<u>481-498 (18)</u>	20.010		
47	1159977.440	SDR_BCAST_WR_TBIT	0x01	<u>499-501 (3)</u>	2.500		
48	1159979.940	DELIM_BUS_IDLE	0x00	502-506 (5)	39892.840		×
PHY St	tates 439-501						
				ive time (us)			

Real-Time, Single-Shot View of Signals

- I3C PurVue Analyzer[™] embedded real-time oscilloscope license provides a real-time, single-shot view of all I3C signals
- It eliminates probing hassles with conventional scopes (attachment issues, cost issues, EMI issues) and completely eliminates the need for using a conventional scope

Pristine signal measurement is shown here where there are no artefacts due to the probes picking up noise from Wi-Fi or RF signals

Why? Because Probes Are Antennas

Most oscilloscope probes result in too much noise pickup The SV4E oscilloscope is embedded into the I3C signal plane, so it has far less noise

69

introspect technology

PurVue AnalyzerTM Capture

- A single component for <u>simultaneous</u> protocol capture (digital capture) and oscilloscope capture (analog capture)
- Familiar user interface (the viewer is almost identical to the I3cDataCapture)
- With the PurVue viewer, users can quickly find interesting parts of the waveform since it is protocol-aware

	i3cPurVueCapture1 properties (class: I3cPurVueCapture)				
analogCapturePort	1				
digitalCaptureBus	i3cBus				
triggerCondition	privateRead				
preTriggerDuration	5000				
postTriggerType	numberOfFrames				
postTriggerDuration	1				
slaveAddrForTrigger	None				
saveResults	True				

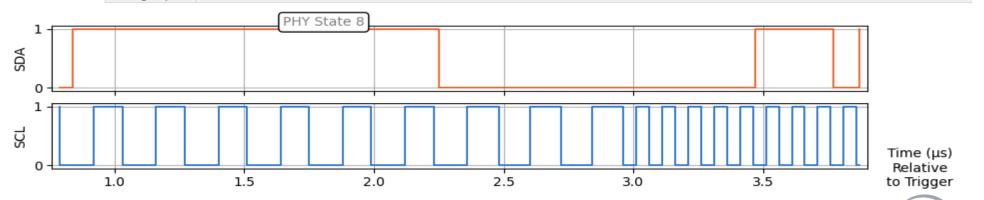
PurVue AnalyzerTM Digital View

🔯 I3C PurVue Capture: Run_2022-08-08_1516 / i3cPurVueCapture1

– 🗆 🗙

introspect

technolog


274 PHY States, 21 I3C States, 1 Transactions

Times: RelativeToTrigger ~

PHY I3C States Transactions

ID	Time (µs)	Description	Param	PHY States	Duration (µs)	Transaction	Info	
0	0.000	DELIM_BUS_FREE	0x00	<u>0-0 (1)</u>	0.810			
1	0.810	SDR_BCAST_I3C_WR	0xFC	<u>1-18 (18)</u>	1.930	<u>0</u>		
2	2.740	SDR_BCAST_I3C_ACK	0x00	<u>19-20 (2)</u>	0.240			
3	2.980	SDR_CCC	0x07	21-38 (18)	0.800		CCC: ENTDAA	
4	3.780	SDR_CCC_TBIT	0x00	<u>39-41 (3)</u>	0.100			
5	3.880	DAA_SR	0x00	42-45 (4)	1.650			
6	5.530	DAA_I3C_BCAST_RD	0xFD	46-64 (19)	0.800			
7	6.330	DAA_I3C_BCAST_ACK	0x00	<u>65-66 (2)</u>	0.240			
8	6.570	DAA_SLV_INFO_B0	0xCF	67-86 (20)	1.920			
9	8.490	DAA_SLV_INFO_B1	0x2A	87-108 (22)	1.920			

Digital Capture (PHY States 1-41) Analog Capture

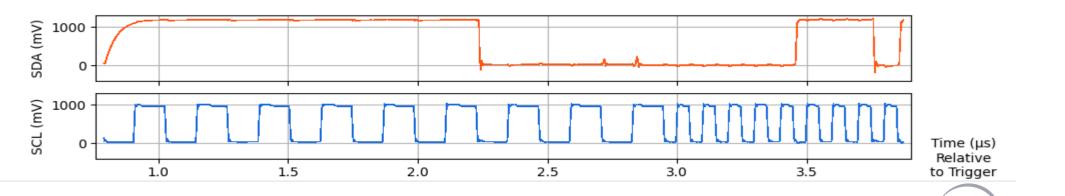
PurVue AnalyzerTM Analog View

I3C PurVue Capture: Run_2022-08-08_1516 / i3cPurVueCapture1

274 PHY States, 21 I3C States, 1 Transactions

Times: RelativeToTrigger ~

PHY I3C States Transactions


ID	Time (µs)	Description	Param	PHY States	Duration (µs)	Transaction	Info	
0	0.000	DELIM_BUS_FREE	0x00	0-0 (1)	0.810			
1	0.810	SDR_BCAST_I3C_WR	0xFC	<u>1-18 (18)</u>	1.930	<u>0</u>		
2	2.740	SDR_BCAST_I3C_ACK	0x00	<u>19-20 (2)</u>	0.240			
3	2.980	SDR_CCC	0x07	21-38 (18)	0.800		CCC: ENTDAA	
4	3.780	SDR_CCC_TBIT	0x00	<u>39-41 (3)</u>	0.100			
5	3.880	DAA_SR	0x00	42-45 (4)	1.650			
6	5.530	DAA_I3C_BCAST_RD	0xFD	46-64 (19)	0.800			
7	6.330	DAA_I3C_BCAST_ACK	0x00	<u>65-66 (2)</u>	0.240			
8	6.570	DAA_SLV_INFO_B0	0xCF	67-86 (20)	1.920			
9	8.490	DAA_SLV_INFO_B1	0x2A	87-108 (22)	1.920			

 \times

introspect

technologu

Digital Capture (PHY States 1-41) Analog Capture

72

Summary

HIGHLY DIFFERENTIATED SOLUTIONS

- Introspect develops parallel test instruments for high-speed interfaces
- We have created a rich portfolio of solutions for sourcesynchronous and DDR interfaces
- Our solutions can be deployed at the component level and at the module level

