

DATA SHEET

SV3D09 Direct-Attach SerDes Module

D SERIES

Table of Contents

Table of Contents	2
List of Figures	
List of Tables	
Introduction	
Overview	
Key Benefits	
Applications	
Features	7
Multi-Lane Loopback	7
Multiple-Source Jitter Injection	8
Pre-Emphasis Generation	9
Burst-Mode BER Testing	11
Programmable SSC Generation and Frequency Synthesis	12
Per-Lane Clock Recovery and Unique Dual-Path Architecture	13
Auxiliary Control Port	
Parallel Transfer Interface	
Standard Error Detector Analysis	
Automation	
Physical Description	
•	
Loadboard Connectors Footprint and Dimensions	
Electrical Description	20
Specifications	29

List of Figures

Figure 1	Illustration of loopback applications	8
Figure 2	Illustration of calibrated jitter waveform	8
Figure 3	Illustration of jitter tolerance curve	9
Figure 4	Illustration of pre-emphasis design	.10
Figure 5	Illustration of multiple waveform shapes that can be synthesized using the pre-empl	nasis
function c	of the SV3D	.10
Figure 6	Illustration of burst-mode error detection.	
Figure 7	Programmable SSC generation	.12
Figure 8	Per-lane clock recovery and dual-path architecture	.13
Figure 9	PTI clock / data relationship for 12.5 MHz (single data rate) operation	.14
_	Sample waveform for 24 byte PTI transfer	
Figure 11	Sampling of analysis and report windows	.16
Figure 12	Screen capture of Pinetree user environment	.17
Figure 13	Top view of SV3D module	.18
	Bottom view of SV3D module	
Figure 15	SV3D loadboard footprint placement. Measurements are in mil	.19
Figure 16	SV3D side profile on loadboard. Measurements are in mil	.19

List of Tables

Table 1	Loadboard Connectors Descriptions	20
Table 2	Load board J1 Connector Pin-Out	20
Table 3	Load board J2 Connector Pin-Out	22
Table 4	Load board J3 Connector Pin-Out	23
Table 5	Load board J4 Connector Pin-Out	24
Table 6	Load Board J5 Connector Pin-Out*	25
Table 7	General Specifications	29
Table 8	Transmitter Characteristics	30
Table 9	Receiver Characteristics	33
Table 10	Clocking Characteristics	34
Table 11	Pattern Handling Characteristics	35
Table 12	Instruction Sequence Cache	36
Table 13	DUT Control Capabilities	36

Introduction

OVERVIEW

The SV3D Direct-Attach SerDes Module is a versatile, high-performance instrument that creates a new category of tool for high-speed digital product engineering teams. It integrates multiple technologies to enable the self-contained test and measurement of SerDes interfaces such as PCI Express Gen 3, MIPI M-PHY or USB3 and advanced protocols such as MIPI C-PHY and MIPI D-PHY. The SV3D mounts directly on an application or test board without cables. It contains 32 independent SerDes stimulus generation ports, 24 independent capture and measurement SerDes ports and various clocking, synchronization, and lane-expansion capabilities. It has been designed specifically to address the growing need of a parallel, system-oriented test methodology while offering world-class signal-integrity features such as jitter injection and jitter measurement.

With a small footprint, an extensive signal-integrity feature set, and an exceptionally powerful software development environment, the SV3D is not only suitable for signal-integrity verification engineers that perform traditional characterization tasks, but it is also ideal for FPGA developers and software developers who need rapid turnaround signal verification tools or hardware-software interoperability confirmation tools. The SV3D integrates state of the art functions such as digital data capture, bit error rate measurement, clock recovery, jitter decomposition and jitter generation.

KEY BENEFITS

- True parallel bit-error-rate measurement across 24 RX lanes
- Fully synthesized integrated jitter injection on all 32 TX lanes
- Fully automated integrated jitter testing on all lanes
- Optimized pattern generator rise-time for receiver stress test applications
- Flexible pre-emphasis and equalization
- Flexible loopback support per lane
- Hardware clock recovery per lane
- State of the art programming environment based on the highly intuitive Python language
- Integrated device control through SPI, I2C, or JTAG

- Reconfigurable, protocol customization (on request)
- Reconfigurable GPIOs
- RoHS Compliant (meets 2011/65/EU RoHS Directive)

APPLICATIONS

Parallel PHY validation of serial bus standards such as:

PCI Express (PCIe)

HDMI

• UHS-2

Thunderbolt

MIPI M-PHY

XAUI

CPRI

JESD204B

USB

SATA

Interface test of electrical/optical media such as:

- Backplane
- Cable
- CFP MSA, SFP MSA, SFP+ MSA

Plug-and-play system-level validation such as:

- PCI Express
- MIPI D-PHY, CSI/DSI Protocols
- MIPI M-PHY, UniPro Protocols

Timing verification:

- PLL transfer function measurement
- Clock recovery bandwidth verification
- Frequency ppm offset characterization

Mixed-technology applications:

- High-speed ADC and DAC (JESD204) data capture and/or synthesis
- FPGA-based system development
- Channel and device emulation

Features

MULTI-LANE LOOPBACK

The SV3D is the only bench-top tool that offers instrument-grade loopback capability on differential lanes.* The loopback capability of the SV3D includes:

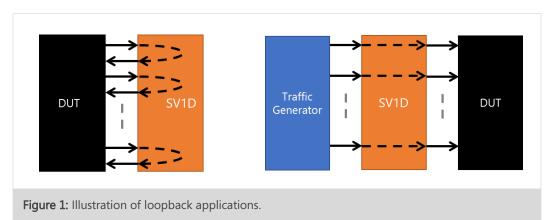

- Retiming of data for the purpose of decoupling DUT receiver performance from DUT transmitter performance
- Arbitrary jitter or voltage swing control on loopback data

Figure 1 shows two common loopback configurations that can be used with the SV3D. In the first configuration, a single DUT's transmitter and receiver channels are connected through the SV3D. In the second configuration, arbitrary pattern testing can be performed on an end-to-end communications link. The SV3D is used to pass data through from a traffic generator (such as an endpoint on a real system board) to the DUT while stressing the DUT receiver with jitter, skew, or voltage swing.

SV3D09 Direct-Attach SerDes Module INTROSPECT.CA

^{*} The SV3D09 consists of 32 TX channels and 24 RX channels, for 24 loopback connections in total.

MULTIPLE-SOURCE JITTER INJECTION

The SV3D can generate calibrated jitter stress on any data pattern and any output lane configuration. Sinusoidal jitter injection is calibrated in the time and frequency domain to generate high-purity stimulus signals as shown in Figure 2.

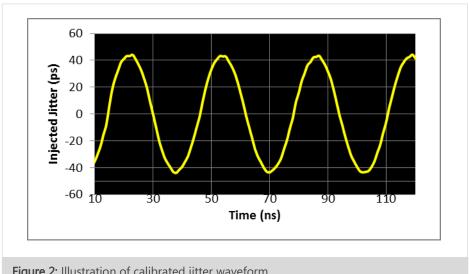
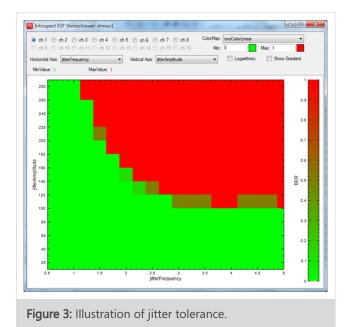
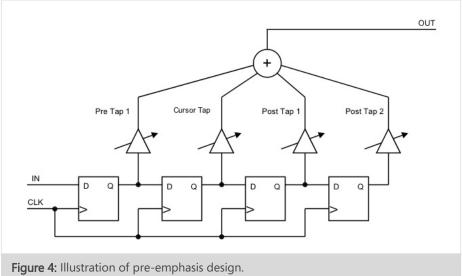
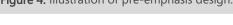
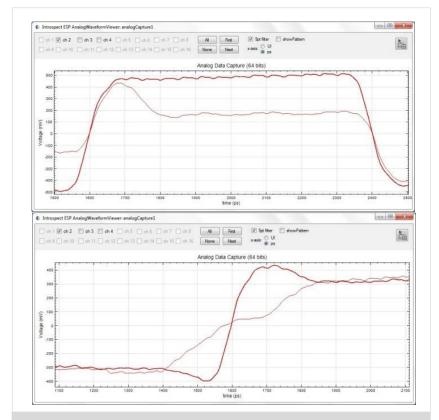



Figure 2: Illustration of calibrated jitter waveform.

The jitter injection feature is typically exploited to perform automated jitter tolerance testing as shown in the example in Figure 3. As is the case for other features in the SV3D Direct-Attach SerDes Module, jitter tolerance testing is conducted in parallel across all lanes. For advanced applications, the SV3D also includes RJ injection and a third-source arbitrary waveform jitter synthesizer.




PRE-EMPHASIS GENERATION


Conventionally offered as a separate instrument, per-lane pre-emphasis control is integrated on the 8-lane SV3D tester. The user can individually set the transmitter pre-emphasis using a built-in Tap structure. Pre-emphasis allows the user to optimize signal characteristics at the DUT input pins.

Each transmitter in the SV3D implements a discrete-time linear equalizer as part of the driver circuit. An illustration of such equalizer is shown in Figure 4, and sample synthesized waveform shapes are shown in Figure 5.

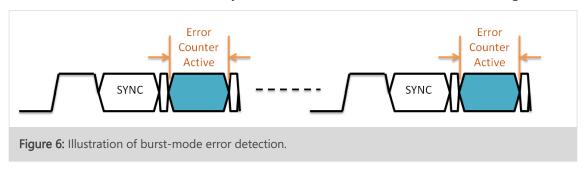


Figure 5: Illustration of multiple waveform shapes that can be synthesized using the pre-emphasis function of the SV3D.

BURST-MODE BER TESTING

Modern SerDes interfaces require complex training sequences and sophisticated power-efficient operating modes. Often called burst-mode, many SerDes transmissions require a new class of Error Detector: one that can compute BER on only sections of a non-continuous transmitted data stream. The SV3D includes the optional ability to automatically track intermittent sleep/burst cycles within a test pattern and to measure only relevant payload sections. This is illustrated in Figure 6. In the figure, the link is asleep for a long time (indicated by the static low and static high levels), then some training "SYNC" pattern is transmitted for a short burst before payload data is transmitted. Once the payload data is transmitted, the SV3C automatically resumes error detection and error counting.

PROGRAMMABLE SSC GENERATION AND FREQUENCY SYNTHESIS

The SV3D incorporates precision frequency synthesis technology that allows for the generation of programmable SSC waveforms at any data rate. The SSC waveforms are superimposed on the pattern generator outputs, and they coexist with other jitter injection sources of the SV3D. Thus, a truly complete jitter cocktail can be produced for the most thorough receiver validation. Figure 7 illustrates the SSC capability of the SV3D. In the figure, the SV3D is programmed to synthesize four slightly different modulation frequencies showcasing the precision programmability of the tool.

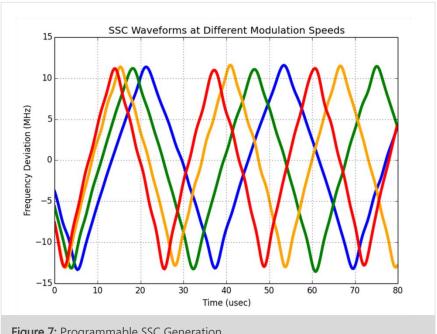


Figure 7: Programmable SSC Generation.

PER-LANE CLOCK RECOVERY AND UNIQUE DUAL-PATH **ARCHITECTURE**

True to the integrated nature of its design, each SV3C receiver has its own embedded analog clock recovery circuit. That is, 24 individual CDR circuits are monolithically integrated in this miniature test system, thus offering the lowest possible sampling latency in a test and measurement instrument.

The monolithic nature of the SV3C clock recovery helps achieve wide tracking bandwidth for measuring signals that possess spread-spectrum clocking or very high amplitude wander.

Figure 8 shows a block diagram of the clock recovery capability inside the SV3C Personalized SerDes Tester. Also shown in Figure 8 is the dual-path receiver architecture of the SV3C. This unique architecture allows the SV3C to operate as both a digital capture/analysis instrument and an analog measurement instrument. A feature rich clock management system allows for customization of the SV3C to specific customer requirements.

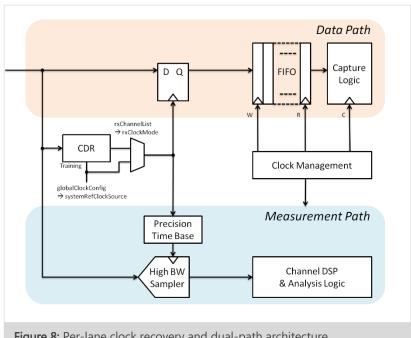
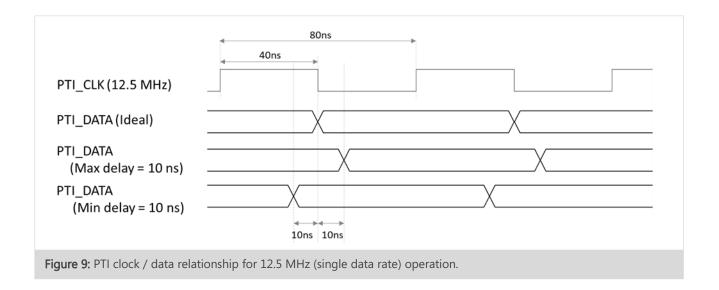
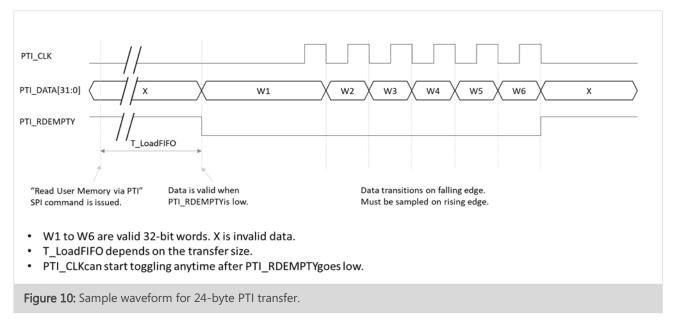


Figure 8: Per-lane clock recovery and dual-path architecture.



AUXILIARY CONTROL PORT


The SV3D includes a low-speed auxiliary control port. It enables controlling DUT registers through JTAG, I2C, or SPI. Additionally, the port includes two reconfigurable trigger and five flag capabilities for synchronizing with external tools or events. The pin location for these controls are as given in Table 6.

PARALLEL TRANSFER INTERFACE

The SV3D includes a low-speed, 32 bit wide output parallel interface, for transferring data from the SV3D to a DUT or external device. Data on the 32 bit interface is valid when the PTI_RDEMPTY output pin is low and valid on the rising edge of PTI_CLK input (clock signal provided by the external device). The intended rate of data transfers is 12.5 MHz. Typical transfer waveforms are given in Figure 9 and Figure 10. The pin locations for the Parallel Transfer Interface are as given in Table 6.

STANDARD ERROR DETECTOR ANALYSIS

The SV3D09 instrument has an independent Bit Error Rate Tester (BERT) for each of its input channels. Each BERT compares recovered (retimed) data from a single input channel against a specified data pattern and reports the bit error count.

Apart from error counting, the instrument offers a wide range of measurement and analysis features including:

- Jitter separation
- Eye mask testing
- Voltage level, pre-emphasis level, and signal parameter measurement
- Frequency measurement and SSC profile extraction

Figure 11 illustrates a few of the analysis and reporting features of the SV3D. Starting from the top left and moving in a clockwise manner, the figure illustrates bathtub acquisition and analysis, waveform capture, raw data viewing, and eye diagram plotting. As always, these analysis options are executed in parallel on all activated lanes.

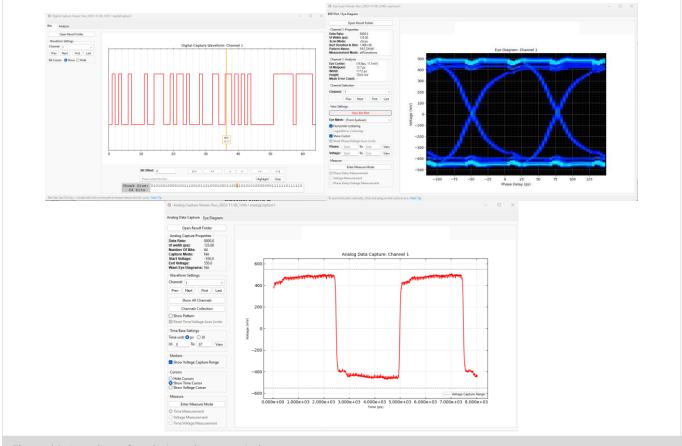
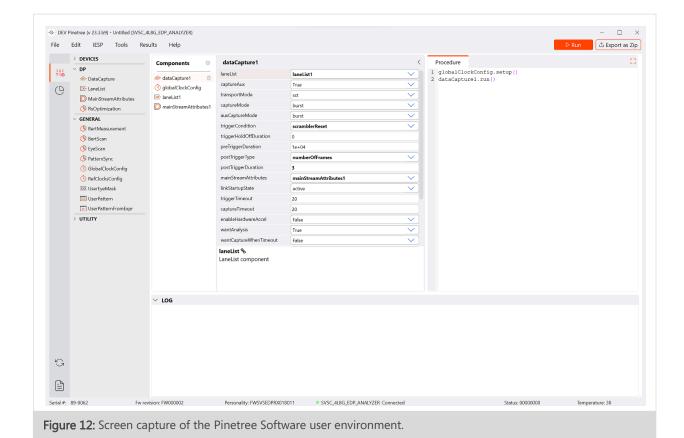



Figure 11: Sampling of analysis and report windows.

AUTOMATION

The SV3D is operated using the award winning Pinetree Software. It features a comprehensive scripting language with an intuitive component-based design as shown in the screen shot in Figure 12(a). Component-based design is Pinetree's way of organizing the flexibility of the instrument in a manner that allows for easy program development. It highlights to the user only the parameters that are needed for any given task, thus allowing program execution in a matter of minutes. For further help, the SV3D features automatic code generation for common tasks such as Eye Diagram or Bathtub Curve generation as shown in Figure 12(b).

Physical Description

Figure 13 and 14 depict the top and bottom views of the SV3D module.

Figure 13: Top view of SV3D module.

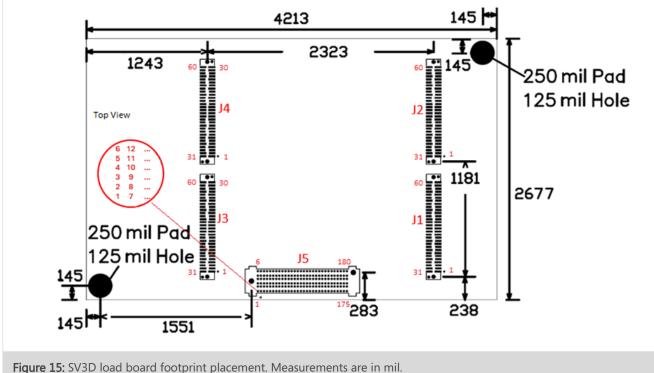


Figure 14: Bottom view of SV3D module.

LOAD BOARD CONNECTORS FOOTPRINT AND DIMENSIONS

Figure 15 depicts the connectors footprint required to mate with the SV3D module. The rectangle area is occupied by the SV3D module, to be mounted on the load board by 2 diagonal mounting holes and 5 connectors J1, J2, J3, J4 and J5.

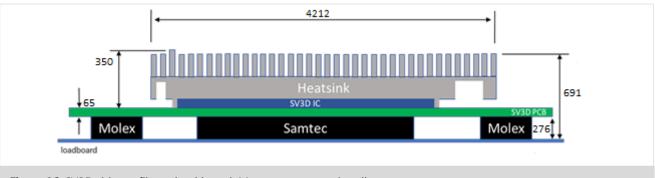


Figure 16: SV3D side profile on load board. Measurements are in mil.

The connector part number information is shown in Table 1.

TABLE 1 LOADBOARD CONNECTORS DESCRIPTIONS

CONNECTOR	MANUFACTURER	PART NUMBER	DESCRIPTIONS	PIN COUNT
J1, J2, J3, J4	Molex	171446-0115	SPEEDSTACK PLUG	60
J5	Samtec	SEAM8-30-02.0- S-06-3	CONN SEARAY 30x6, 0.8mm pitch	180

Electrical Description

The following tables describe the pin out information of the 5 connectors on the SV3D depicted in Figure 15. When designing the interface logic, please ensure not to drive any I/O pins on the SV3D until the power rails have been completely powered on.

TABLE 2 LOAD BOARD J1 CONNECTOR PIN-OUT

PIN	NET	DESCRIPTION	VOLTAGE LEVEL
1,4,7,10,13,17,20,23,26,29,32, 35,38,41,44,48, 51,54,57,60	GND		
2	RX17_P	GXB Receive Link	1.5V PCML
3	RX17_N	GXB Receive Link	1.5V PCML
5	RX21_P	GXB Receive Link	1.5V PCML
6	RX21_N	GXB Receive Link	1.5V PCML
8	RX18_P	GXB Receive Link	1.5V PCML
9	RX18_N	GXB Receive Link	1.5V PCML
11	(RX19_P)	GXB Receive Link, not present in SV3D09 firmware	1.5V PCML
		GXB Receive Link, not present in SV3D09	1.5V PCML
12	(RX19_N)	firmware	
14	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
15	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML

16	JTAG-TMS	Built-in Pull-up Resistor10kOhm	2.5V
18	RX20_P	GXB Receive Link	1.5V PCML
19	RX20_N	GXB Receive Link	1.5V PCML
21	RX24_N	GXB Receive Link	1.5V PCML
22	RX24_P	GXB Receive Link	1.5V PCML
24	RX23_N	GXB Receive Link	1.5V PCML
25	RX23_P	GXB Receive Link	1.5V PCML
		GXB Receive Link, not present in SV3D09	1.5V PCML
27	(RX22_N)	firmware	
		GXB Receive Link, not present in SV3D09	1.5V PCML
28	(RX22_P)	firmware	
30	JTAG-TCK	Built-in Pull-up Resistor 1kOhm	2.5V
31	JTAG-TDI	Built-in Pull-up Resistor 10kOhm	2.5V
33	TX17_P	GXB Transmit Link	1.5V PCML
34	TX17_N	GXB Transmit Link	1.5V PCML
36	TX21_P	GXB Transmit Link	1.5V PCML
37	TX21_N	GXB Transmit Link	1.5V PCML
39	TX18_N	GXB Transmit Link	1.5V PCML
40	TX18_P	GXB Transmit Link	1.5V PCML
42	TX19_P	GXB Transmit Link	1.5V PCML
43	TX19_N	GXB Transmit Link	1.5V PCML
45	JTAG-TDO	Built-in Pull-up Resistor 21.5kOhm	2.5V
46	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
47	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
49	TX20_N	GXB Transmit Link	1.5V PCML
50	TX20_P	GXB Transmit Link	1.5V PCML
52	TX24_P	GXB Transmit Link	1.5V PCML
53	TX24_N	GXB Transmit Link	1.5V PCML
55	TX23_N	GXB Transmit Link	1.5V PCML
56	TX23_P	GXB Transmit Link	1.5V PCML
58	TX22_P	GXB Transmit Link	1.5V PCML
59	TX22_N	GXB Transmit Link	1.5V PCML

TABLE 3 LOAD BOARD J2 CONNECTOR PIN-OUT

PIN	NET	DESCRIPTION	VOLTAGE LEVEL
1,4,7,10,13,17,20,23,26,29,32,			
35,38,41,44,48, 51,54,57,60	GND		
2	RX25_P	GXB Receive Link	1.5V PCML
3	RX25_N	GXB Receive Link	1.5V PCML
5	RX29_P	GXB Receive Link	1.5V PCML
6	RX29_N	GXB Receive Link	1.5V PCML
8	RX26_P	GXB Receive Link	1.5V PCML
9	RX26_N	GXB Receive Link	1.5V PCML
	(RX30_N)	GXB Receive Link, not present in SV3D09	1.5V PCML
11		firmware	
	(RX30_P)	GXB Receive Link, not present in SV3D09	1.5V PCML
12		firmware	
14	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
15	RESERVED	(Not used, install R=0 ₀ to gnd)	1.5V PCML
16	EXTRA_IO_1	GPIO pin	2.5V LVCMOS
18	RX27_P	GXB Receive Link	1.5V PCML
19	RX27_N	GXB Receive Link	1.5V PCML
21	RX31_P	GXB Receive Link	1.5V PCML
22	RX31_N	GXB Receive Link	1.5V PCML
24	RX28_P	GXB Receive Link	1.5V PCML
25	RX28_N	GXB Receive Link	1.5V PCML
27	(RX32_N)	GXB Receive Link, not present in SV3D09 firmware	1.5V PCML
	(RX32_P)	GXB Receive Link, not present in SV3D09	1.5V PCML
28		firmware	
30	EXTRA_IO_3	GPIO pin	2.5V LVCMOS
31	EXTRA_IO_0	GPIO pin	2.5V LVCMOS
33	TX25_N	GXB Transmit Link	1.5V PCML
34	TX25_P	GXB Transmit Link	1.5V PCML
36	TX29_P	GXB Transmit Link	1.5V PCML
37	TX29_N	GXB Transmit Link	1.5V PCML
39	TX26_N	GXB Transmit Link	1.5V PCML
40	TX26_P	GXB Transmit Link	1.5V PCML
42	TX30_P	GXB Transmit Link	1.5V PCML
43	TX30_N	GXB Transmit Link	1.5V PCML
45	RESERVED	(Not used, install R=0 _n to gnd)	1.5V PCML
46	RESERVED	(Not used, install R=0 ₀ to gnd)	1.5V PCML
47	EXTRA_IO_2	GPIO pin	2.5V LVCMOS

49	TX27_N	GXB Transmit Link	1.5V PCML
50	TX27_P	GXB Transmit Link	1.5V PCML
52	TX31_P	GXB Transmit Link	1.5V PCML
53	TX31_N	GXB Transmit Link	1.5V PCML
55	TX28_N	GXB Transmit Link	1.5V PCML
56	TX28_P	GXB Transmit Link	1.5V PCML
58	TX32_P	GXB Transmit Link	1.5V PCML
59	TX32_N	GXB Transmit Link	1.5V PCML

TABLE 4 LOAD BOARD J3 CONNECTOR PIN-OUT

PIN	NET	DESCRIPTION	VOLTAGE LEVEL
1,4,7,10,13,17,20,23,26,29,32,			
35,38,41,44,48, 51,54,57,60	GND		
2	TX1_P	GXB Transmit Link	1.5V PCML
3	TX1_N	GXB Transmit Link	1.5V PCML
5	TX2_P	GXB Transmit Link	1.5V PCML
6	TX2_N	GXB Transmit Link	1.5V PCML
8	TX3_N	GXB Transmit Link	1.5V PCML
9	TX3_P	GXB Transmit Link	1.5V PCML
11	TX4_P	GXB Transmit Link	1.5V PCML
12	TX4_N	GXB Transmit Link	1.5V PCML
14	EXTRA_IO_5	Master and Slave Cores Locked. Active Low	2.5V LVCMOS
15	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
16	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
18	TX8_N	GXB Transmit Link	1.5V PCML
19	TX8_P	GXB Transmit Link	1.5V PCML
21	TX7_N	GXB Transmit Link	1.5V PCML
22	TX7_P	GXB Transmit Link	1.5V PCML
24	TX6_N	GXB Transmit Link	1.5V PCML
25	TX6_P	GXB Transmit Link	1.5V PCML
27	TX5_N	GXB Transmit Link	1.5V PCML
28	TX5_P	GXB Transmit Link	1.5V PCML
30	EXTRA_IO_7	GPIO pin	2.5V LVCMOS
31	EXTRA_IO_4	User LED and Tx Buffer Underflow. Active Low	2.5V LVCMOS
33	RX1_P	GXB Receive Link	1.5V PCML
34	RX1_N	GXB Receive Link	1.5V PCML
36	RX2_N	GXB Receive Link	1.5V PCML

37	RX2_P	GXB Receive Link	1.5V PCML
39	RX3_P	GXB Receive Link	1.5V PCML
40	RX3_N	GXB Receive Link	1.5V PCML
42	(RX4_N)	GXB Receive Link, not present in SV3D09 firmware	1.5V PCML
43	(RX4_P)	GXB Receive Link, not present in SV3D09 firmware	1.5V PCML
45	EXTRA_IO_6	Master and Slave Cores Ready. Active Low	2.5V LVCMOS
46	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
47	RESERVED	(Not used, install R=0□ to gnd)	1.5V PCML
49	RX8_P	GXB Receive Link	1.5V PCML
50	RX8_N	GXB Receive Link	1.5V PCML
52	RX7_N	GXB Receive Link	1.5V PCML
53	RX7_P	GXB Receive Link	1.5V PCML
55	RX6_P	GXB Receive Link	1.5V PCML
56	RX6_N	GXB Receive Link	1.5V PCML
58	(RX5_N)	GXB Receive Link, not present in SV3D09 firmware	1.5V PCML
59	(RX5_P)	GXB Receive Link, not present in SV3D09 firmware	1.5V PCML

TABLE 5 LOAD BOARD J4 CONNECTOR PIN-OUT

PIN	NET	DESCRIPTION	VOLTAGE LEVEL
1,4,7,10,13,17,20,23,26,29,32,			
35,38,41,44,48, 51,54,57,60	GND		
2	TX9_P	GXB Transmit Link	1.5V PCML
3	TX9_N	GXB Transmit Link	1.5V PCML
5	TX10_P	GXB Transmit Link	1.5V PCML
6	TX10_N	GXB Transmit Link	1.5V PCML
8	TX14_N	GXB Transmit Link	1.5V PCML
9	TX14_P	GXB Transmit Link	1.5V PCML
11	TX13_N	GXB Transmit Link	1.5V PCML
12	TX13_P	GXB Transmit Link	1.5V PCML
14	REFIN_CLK_P	Ref Clock Input	3.3V LVDS*
15	REFIN_CLK_N	Ref Clock Input	3.3V LVDS*
16	EXTRA_IO_9	GPIO pin	2.5V LVCMOS
18	TX11_P	GXB Transmit Link	1.5V PCML
19	TX11_N	GXB Transmit Link	1.5V PCML
21	TX15_P	GXB Transmit Link	1.5V PCML
22	TX15_N	GXB Transmit Link	1.5V PCML

24	TX12 P	GXB Transmit Link	1.5V PCML
25	TX12_N	GXB Transmit Link	1.5V PCML
27	TX16_N	GXB Transmit Link	1.5V PCML
28	TX16 P	GXB Transmit Link	1.5V PCML
30	EXTRA_IO_11	GPIO pin	2.5V LVCMOS
31	EXTRA_IO_8	GPIO pin	2.5V LVCMOS
33	RX9 P	GXB Receive Link	1.5V PCML
34	RX9 N	GXB Receive Link	1.5V PCML
36	RX10 N	GXB Receive Link	1.5V PCML
37	RX10 P	GXB Receive Link	1.5V PCML
39	RX14 P	GXB Receive Link	1.5V PCML
40	RX14_N	GXB Receive Link	1.5V PCML
-	(RX13_N)	GXB Receive Link, not present in SV3D09	1.5V PCML
42		firmware	
	(RX13_P)	GXB Receive Link, not present in SV3D09	1.5V PCML
43		firmware	
45	EXTRA_IO_10	GPIO pin	2.5V LVCMOS
46	RESERVED	(Not used, install R=0 _□ to gnd)	1.5V PCML
47	RESERVED	(Not used, install R=0 _□ to gnd)	1.5V PCML
49	RX11_N	GXB Receive Link	1.5V PCML
50	RX11_P	GXB Receive Link	1.5V PCML
52	RX15_P	GXB Receive Link	1.5V PCML
53	RX15_N	GXB Receive Link	1.5V PCML
55	RX12_N	GXB Receive Link	1.5V PCML
56	RX12_P	GXB Receive Link	1.5V PCML
	(RX16_P)	GXB Receive Link, not present in SV3D09	1.5V PCML
58		firmware	
	(RX16_N)	GXB Receive Link, not present in SV3D09	1.5V PCML
59		firmware	

TABLE 6 LOAD BOARD J5 CONNECTOR PIN-OUT*

Z	Z E T	0/1	Z	N E T	0/1	NIG	Н Ш Z	1/0
1	12V0		61	PTI_RESET_N	I	121	GPIO_1_0 / FLAG[3]	I/O
2	12V0		62	GPIO_4_4 / Reserved	I	122	GPIO_1_7	
3	12V0		63	GPIO_4_11 / Reserved	I	123	GND	
4	12V0		64	GPIO_4_12 / Reserved	0	124	GPIO_2_12	
5	12V0		65	GPIO_4_19 / Reserved	I	125	GPIO_2_19	
6	12V0		66	GND		126	GPIO_2_20	
7	GND		67	GPIO_3_0 / Reserved	I	127	GPIO_1_1	
8	GND		68	GPIO_3_7 / Reserved	I	128	GND	
9	GND		69	GPIO_3_8 / Reserved	0	129	GPIO_DQS_1 8	
10	GND		70	GPIO_3_15 / Reserved	I	130	GPIO_1_15	
11	GND		71	GND		131	GPIO_1_16	
12	GND		72	GPIO_4_20 / Reserved	I	132	GPIO_1_23	
13	PTI_DATA_ 0	I/O	73	GPIO_3_1		133	GND	
14	PTI_DATA_ 1	I/O	74	GPIO_3_6		134	GPIO_1_6	
15	PTI_DATA_ 2	I/O	75	GPIO_3_9		135	GPIO_1_9	
16	PTI_DATA_ 3	I/O	76	GND		136	GPIO_1_14	
17	PTI_DATA_ 4	I/O	77	GPIO_3_16		137	GPIO_1_17	

18	PTI_DATA_	I/O	78	GPIO_3_23	138	GPIO_1_22	
19	PTI_DATA_	I/O	79	GPIO_3_2	139	GPIO_1_2 / EXT_TRIG[1]	I
20	PTI_DATA_ 7	I/O	80	GPIO_DQS_ 3_5	140	GPIO_1_5 / FLAG[2]	I/O
21	PTI_DATA_ 8	I/O	81	GND	141	GPIO_1_10	
22	GPIO_DQS_ 5_13		82	GPIO_3_14	142	GPIO_DQS_1 _13	
23	GPIO_5_17		83	GPIO_DQS_ 3_17	143	GPIO_1_18	
24	GND		84	GPIO_3_22	144	GPIO_1_21	
25	PTI_DATA_ 9	I/O	85	GPIO_3_3	145	GPIO_1_3 / FLAG[1]	I/O
26	PTI_DATA_ 10	I/O	86	GND	146	GPIO_1_4 / FLAG[0]	I/O
27	PTI_DATA_ 11	I/O	87	GPIO_3_10	147	GPIO_1_11	
28	PTI_DATA_ 12	I/O	88	GPIO_3_13	148	GPIO_1_12	
29	GND		89	GPIO_3_18	149	GPIO_1_19	
30	PTI_DATA_ 13	I/O	90	GPIO_3_21	150	GND	
31	PTI_DATA_ 14	I/O	91	GND	151	SCLK_R	I
32	PTI_DATA_ 15	I/O	92	GPIO_3_4	152	MOSI_R	I
33	PTI_DATA_ 16	I/O	93	GPIO_3_11	153	GPIO_0_8	
34	GND		94	GPIO_3_12	154	SS_n_L	I
35	PTI_DATA_ 17	I/O	95	GPIO_3_19	155	GND	
36	PTI_DATA_ 18	I/O	96	GPIO_3_20	156	GPIO_1_20	
37	PTI_DATA_ 19	I/O	97	GPIO_2_0	157	MISO_R	0
38	PTI_DATA_ 20	I/O	98	GPIO_DQS_ 2_7	158	SS_n_R	I
39	GND		99	GPIO_2_8	159	GPIO_DQS_0 _9	

40	PTI_DATA_	I/O	100	GPIO_2_15		160	GND	
41	PTI_DATA_	I/O	101	GPIO_2_16		161	MOSI_L	1
42	PTI_DATA_	I/O	102	CDIO 2 22	GPIO_2_23		CDIO 0 22	
42	23	1/0	102	GPIO_2_23		162	GPIO_0_23	
43	PTI_DATA_ 24	I/O	103	GPIO_2_1		163	GPIO_0_2	
44	GND		104	GPIO_2_6		164	GPIO_0_5	
45	PTI_DATA_ 25	I/O	105	GPIO_2_9		165	GND	
46	PTI_DATA_ 26	I/O	106	GPIO_DQS_ 2 14		166	SCLK_L	I
47	PTI_DATA_ 27	I/O	107	GPIO_2_17		167	MISO_L	0
48	PTI_DATA_ 28	I/O	108	GND		168	GPIO_0_22	
49	GND		109	GPIO_2_2		169	GPIO_0_3	
50	PTI_DATA_ 29	I/O	110	GPIO_2_5		170	GND	
51	PTI_DATA_ 30	I/O	111	GPIO_2_10		171	GPIO_0_10	
52	PTI_DATA_ 31	I/O	112	GPIO_2_13		172	GPIO_0_13	
53	PTI_CLK		113	GND		173	GPIO_0_18	
54	PTI_WRRE Q_N	I	114	GPIO_2_22		174	GPIO_0_21	
55	PTI_RDREQ _N	I	115	GPIO_2_3 / EXT_TRIG[0	I	175	GND	
56	PTI_WR_N	0	116	GPIO_2_4 / FLAG[4]	l/ O	176	GPIO_0_4	
57	PTI_RD_N	0	117	GPIO_2_11		177	GPIO_0_11	
58	CMD_PRO C_READY_A	0	118	GND		178	GPIO_0_12	
59	CMD_PRO C_READY_B	0	119	GPIO_2_18		179	SV3_RST_N	I
60	PTI_OE_N	0	120	GPIO_2_21		180	GPIO_DQS_0 _20	

Specifications

TABLE 7 GENERAL SPECIFICATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Ports			
Number of Differential Transmitters	32		See Table 2 to Table 5 for Pinout.
Number of Differential Receivers	24		See Table 2 to Table 5 for Pinout.
Number of Dedicated Clock Inputs	1		Used as external Reference Clock input. See Table 5 for
			pinout.
Number of Trigger Input Pins	2		Consult user manual for included capability. See Table 6
			for pinout.
Number of Flag Output Pins	5		Consult user manual for included capability. See Table 5
			for pinout.
Generic I/O Pins	190		Consult user manual for included capability. See Table 3
			to Table 6 for pinout. Contact factory for customization.
TX Channel Groups			
Number of independent TX groups	8		TX jitter injection and TX fine skew control are applied
			within each in the following independent channel
			groupings:
			Group 1: 1,2,3,4
			Group 2: 5, 6, 7, 8
			Group 3: 9, 10, 13, 14
			Group 4: 11, 12, 15, 16
			Group 5:17, 18, 19, 21
			Group 6: 20, 22, 23, 24
			Group 7: 25, 26, 29, 30
			Group 8: 27, 28, 31, 32
			See Table 2 to Table 5 for pinout.
Data Rates and Frequencies			
Minimum Programmable Data Rate	400	Mbps	Contact factory for extension to lower data rates.
Maximum Programmable Data Rate	12.8	Gbps	
Frequency Resolution of Programmed	1	kHz	Finer resolution is possible. Contact factory for
Data Rate			customization.
Minimum External Input Clock	25	MHz	
Frequency			
Maximum External Input Clock	250	MHz	
frequency			
Supported External Input Clock I/O			LVDS (typical 400 mVpp input)
Standards			LVPECL (typical 800 mVpp input)

Voltage and Current Ratings and Operating Conditions			
Voltage Supply	12	V	See Table 6 for pinout connections.
Current on 12V DC input	2.9	Α	Typical power-up condition:
			-Tx and Rx lanes idle
	3.3	Α	Typical operating condition:
			- All 32 Tx cannels running at 8 Gbps
			- All 32 Rx channels running BER checking as well as eye
			diagram measurement at 8 Gbps
	5.6	Α	Maximum operating condition:
			- All 32 Tx pairs running at maximum data rate
			- All 32 Rx pairs running BER checking as well as eye
			diagram measurement at maximum data rate

TABLE 8 TRANSMITTER CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Output Standard			CONDITIONS
I/O Standard			PCML (Current Mode Logic)
DC common mode voltage	750	mV	Typical (firmware programmable to VOD/2)
AC Output Differential Impedance	100	Ohm	Typical
Voltage Performance			
Minimum Differential Voltage Swing	20	mV	
Maximum Differential Voltage Swing	1000 800	mVpp mVpp	400 Mbps to 5 Gbps, 50 ohm, AC coupled termination. 5 Gbps to 12.8 Gbps, 50 ohm, AC coupled termination.
Differential Voltage Swing Resolution	20	mV	
Accuracy of Differential Voltage Swing	larger of: +/- 10% of programmed value, and +/-20mV	%, mV	
Rise and Fall Time	50	ps	500 mVpp signal, 20-80%, 50 ohm AC coupled termination.
Pre-emphasis Performance			

Pre-Emphasis Pre-Tap Range	-4 to +4	dB	Both high-pass and low-pass functions are available. This is the smallest achievable range based on worst-case conditions. Typical operating conditions result in wider pre-emphasis range.
Pre-Emphasis Pre-Tap Resolution	Range / 32	dB	
Pre-Emphasis Post1-Tap Range	0 to 6	dB	Only high-pass function is available. This is the smallest achievable range based on worst-case conditions. Typical operating conditions result in wider pre-emphasis range.
Pre-Emphasis Post1-Tap Resolution	Range / 32	dB	
Pre-Emphasis Post2-Tap Range	-4 to +4	dB	Both high-pass and low-pass functions are available. This is the smallest achievable range based on worst-case conditions. Typical operating conditions result in wider pre-emphasis range.
Pre-Emphasis Post2-Tap Resolution	Range / 32	dB	
Jitter Performance			
Random Jitter Noise Floor	1	ps	Based on a single-lane measurement with high-bandwidth scope and with first-order clock recovery.
Minimum Frequency of Injected Deterministic Jitter	0.1	kHz	Contact factory for further customization.
Maximum Frequency of Injected Deterministic Jitter	20	MHz	
Frequency Resolution of Injected Deterministic Jitter	0.1	kHz	Contact factory for further customization.
Maximum Peak-to-Peak Injected Deterministic	1200	ps	at 1 MHz
Jitter	500	ps	at 5 MHz
	300	ps	at 10 MHz
	100	ps	at 20 MHz (This specification is separate from low-frequency wander generator and SSC generator.)
Magnitude Resolution of Injected Deterministic Jitter	500	fs	Jitter injection is based on multi- resolution synthesizer, so this number is an effective resolution. Internal synthesizer resolution is defined in equivalent number of bits.
Injected Deterministic Jitter Setting	Per-group		Common across all channels within a group.
Maximum RMS Random Jitter Injection	0.1	UI	

Magnitude Resolution of Injected Jitter	0.1	ps	
Accuracy of Injected Jitter Magnitude	larger of: +/- 10% of	%, ps	
	programmed		
	value, and		
	+/-10 ps		
Injected Random Jitter Setting	Common		Common across all channels within a TX
			group.
Transmitter-to-Transmitter Skew Performance			
Lane to Lane Integer-UI Minimum Skew Injection	-20	UI	
Lane to Lane Integer-UI Maximum Skew Injection	20	UI	
TX group to TX group fine skew minimum setting	-500	ps	
TX group to TX group fine skew maximum setting	500	ps	
Effect of Skew Adjustment on Jitter Injection	None		
Lane to Lane Skew	+/- 15 +/- 0.5	ps pp UI	Peak-peak spread of master channels across groups. Peak-peak spread of non-master channels with respect to master channel within the group.

TABLE 9 RECEIVER CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Input Coupling			
AC Input Differential Impedance	100	Ohm	This is the impedance between differential wires. Receiver inputs are DC-coupled.
AC Performance			
Minimum Detectable Differential Voltage	25	mV	
Maximum Allowable Differential Voltage	2000	mV	
Minimum Programmable Comparator Threshold Voltage	-500	mV	
Maximum Programmable Comparator Threshold Voltage	+500	mV	
Differential Comparator Threshold Voltage Resolution	10	mV	
Differential Comparator Threshold Voltage Accuracy	larger of: +/- 10% of programmed value, and +/- 20mV	%, mV	
Resolution Enhancement & Equalization			
DC Gain	0, 2, 4, 6, 8	dB	
CTLE Maximum Gain	16	dB	
CTLE Resolution	1	dB	
DC Gain Control	Per-receiver		
Equalization Control	Per-receiver		
Jitter Performance			
Input Jitter Noise Floor in System Reference Mode	25	ps	Based on a single-lane measurement.
Input Jitter Noise Floor in Extracted Clock Mode	10	ps	Based on a single-lane measurement.
Timing Generator Performance			
Resolution at Maximum Data Rate	31.25	mUI	Resolution (as a percentage of UI) improves for lower data rates. Contact factory for details.
Differential Non-Linearity Error	+/- 0.5	LSB	
Integral Non-Linearity Error	+/- 5	ps	
Range	Unlimited		

+/- 10	ps	Measured t 6.401 Gbps, system clock.
	+/- 10	+/- 10 ps

TABLE 10 CLOCKING CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Internal Time Base			
Number of Internal Frequency References	5		Standard configuration creates one measurement path frequency reference, two output clock frequency references. Contact factory for clock domain customization.
Embedded Clock Applications		•	
Transmit Timing Modes	System Extracted		Clock can be extracted from one of the data receiver channels in order to drive all transmitter channels.
Receive Timing Modes	System Extracted		All channels have clock recovery for extracted mode operation.
Single-Lane CDR Tracking Bandwidth	18 24 35	MHz MHz MHz	Low BW setting Medium BW setting High BW setting
Forwarded Clock Applications		<u>'</u>	, 5
Transmit Timing Modes	System Forwarded		Contact factory for forwarded clock routing recommendations.
Receive Timing Modes	System Forwarded		Contact factory for forwarded clock routing recommendations.
Clock Tracking Bandwidth	4	MHz	Second order critically damped response.
Spread Spectrum Support			
Receive Lanes Track SSC Data	Yes		Requires operation in extracted clock mode.
Transmit Lanes Generate SSC Data	Yes		
Minimum Spread	0.1	%	
Maximum Spread	2	%	
Spread Programming Resolution	0.01	%	
Minimum Spreading Frequency	31.5	kHz	
Maximum Spreading Frequency	63	kHz	

TABLE 11 PATTERN HANDLING CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Loopback			
Rx to Tx Loopback Capability	Per channel		24 RX channels available for loopback.
	0	UI	
Lane to Lane Latency Mismatch			
Preset Patterns			
Standard Built-In Patterns	All Zeros		
	D21.5		
	K28.5, K28.7		
	DIV 16, 20		
	DIV 40, 50		
	PRBS 5, 7, 9, 11		
	PRBS13, 15, 21		
	PRBS 23, 31		
Pattern Choice per Transmit Channel	Per-transmitter		
Pattern Choice per Receive Channel	Per-receiver		
BERT Comparison Mode	Automatic seed		Automatically aligns to PRBS data
User-programmable Pattern Memory	generation for PRBS		patterns.
	1	CD 1	TVAA
Total Available Memory	1	GByte Mbit	TX Memory
Individual Force Pattern	Per-transmitter	IVIDIL	RX Memory
Individual Expected Pattern	Per-receiver	1.5	
Minimum Pattern Segment Size	512	bits	
Maximum Pattern Segment Size	65536	bits	
Pattern Sequencing			
Sequence Control	Loop infinite		
	Loop on count		
	Play to end		
Number of Sequencer Slots per Pattern	12		
Generator			
Maximum Loop Count per Sequencer Slot	216 - 1		
Additional Pattern Characteristics			

Pattern Switching	Wait to end of		When sourcing PRBS patterns, this
	segment		option does not exist.
	Immediate		
Raw Data Capture Length	8192	bits	Memory allocation is customizable.
			Contact factory.

TABLE 12 INSTRUCTION SEQUENCE CACHE

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS			
Simple Instruction Cache						
Instruction Learn mode Instruction	Start					
	Stop					
	Replay					
Advanced Instruction Cache						
Local Instruction Storage	1M					
	Instructions					
Instruction Sequence Segments	1000					

TABLE 13 DUT CONTROL CAPABILITIES

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS			
DUT IEEE-1149-1 (JTAG) Port (Option)						
JTAG-Port Transmit Signals	TCK					
	TRST					
	TDI					
JTAG-Port Receive Signals	TDO					
JTAG-Port Transmit Voltage Swing (Fixed)	0 to 2.5	V				
JTAG-Port Receive Max Voltage Swing	0 to 2.5	V				
TDI Bit Memory	4k					
TDO Bit Memory	4k					
DUT SPI Port (Option)						
SPI Signals	SCLK					
	SSN					
	MISO					
	MOSI					
Voltage Swing (Fixed)	0 to 2.5	V				

Revision Number	History	Date
1.0	Document release	Nov 1, 2016
1.1	Updates to pinout (flags, triggers and PTI) and updates to specifications	Feb 14, 2017
1.2	Consolidated updates	March 10, 2017
1.3	Added reference to RoHS compliance	April 14, 2017
1.4	Updated to reflect specifications particular for SV3D09 firmware, at versions SV3D09A010 and later	January 5, 2018
1.5	Updated to reflect additional specifications for SV3D09 firmware, and to correct errors and omissions	January 15, 2018
1.6	Updated PTI pinout for A20 Firmware	March 19, 2019
1.7	Updated document format	December 5, 2022
1.8	Updated Pin Out Information; mentions and screenshots of Pinetree	November 8, 2023
1.9	Updated Figure 15 with additional pin numbering information; updated J5 connector part number	April 4, 2024

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

