
Cheetah SPI Host Adapter

Features

• SPI Master
• Full Duplex SPI at 40 MHz
• Unsupported Overclocking up to 50 MHz
• All Modes Supported
• High-Speed USB Device (480 Mbps transfer to host PC)
• Actual Host Data Throughput Nearly 100% of SPI Clock Rate
• Windows, Linux, and Mac OS X compatible
• Low cost

Summary
The Cheetah™ SPI Host Adapter is a high-speed SPI shifter
that is capable of communicating over an SPI serial bus at up to
50 MHz.

Supported products:

Cheetah SPI Host Adapter
User Manual v3.08
February 28, 2014

1 General Overview

1.1 SPI Background

1.1.1 SPI History

SPI is a serial communication bus developed by Motorola. It is a full-duplex protocol
which functions on a master-slave paradigm that is ideally suited to data streaming
applications.

1.1.2 SPI Theory of Operation

SPI requires four signals: clock (SCLK), master output/slave input (MOSI), master input/
slave output (MISO), and slave select (SS).

Figure 1 : Sample SPI Implementation.
Each slave device requires a separate slave select signal
(SS). This means that as devices are added, the circuit
increases in complexity.

Three signals are shared by all devices on the SPI bus: SCLK, MOSI and MISO. SCLK
is generated by the master device and is used for synchronization. MOSI and MISO are
the data lines. The direction of transfer is indicated by their names. Data is always
transferred in both directions in SPI, but an SPI device interested in only transmitting
data can choose to ignore the receive bytes. Likewise, a device only interested in the
incoming bytes can transmit dummy bytes.

Each device has its own SS line. The master pulls low on a slaves SS line to select a
device for communication.

Cheetah SPI Host Adapter User Manual

2

The exchange itself has no pre-defined protocol. This makes it ideal for data-streaming
applications. Data can be transferred at high speed, often into the range of the tens of
megahertz. The flipside is that there is no acknowledgment, no flow control, and the
master may not even be aware of the slaves presence.

1.1.3 SPI Modes

Although there is no protocol, the master and slave need to agree about the data frame
for the exchange. The data frame is described by two parameters: clock polarity (CPOL)
and clock phase (CPHA). Both parameters have two states which results in four possible
combinations. These combinations are shown in figure 2.

Figure 2 : SPI Modes
The frame of the data exchange is described by two
parameters, the clock polarity (CPOL) and the clock phase
(CPHA). This diagram shows the four possible states for
these parameters and the corresponding mode in SPI.

1.1.4 SPI Benefits and Drawbacks

SPI is a very simple communication protocol. It does not have a specific high-level
protocol which means that there is almost no overhead. Data can be shifted at very high
rates in full duplex. This makes it very simple and efficient in a single master single slave
scenario.

Because each slave needs its own SS, the number of traces required is n+3, where n is
the number of SPI devices. This means increased board complexity when the number of
slaves is increased.

Cheetah SPI Host Adapter User Manual

3

1.1.5 SPI References

• Introduction to Serial Peripheral Interface – Embedded.com

• SPI – Serial Peripheral Interface

Cheetah SPI Host Adapter User Manual

4

http://www.embedded.com/story/OEG20020124S0116
http://www.mct.net/faq/spi.html

2 Hardware Specifications

2.1 Connector Specification

The ribbon cable connector is a standard 0.100" (2.54 mm) pitch IDC type connector.
This connector will mate with a standard keyed boxed header.

Alternatively, a split cable is available which connects to the ribbon cable and provides
individual leads for each pin.

2.1.1 Orientation

The ribbon cable pin order follows the standard convention. The red line indicates the
first position. When looking at your Cheetah adapter in the upright position (Figure 3),
pin 1 is in the top left corner and pin 10 is in the bottom right corner.

Figure 3 : The Cheetah SPI Host Adapter in the upright
position.
Pin 1 is located in the upper left corner of the connector and
Pin 10 is located in the lower right corner of the connector.

If you flip your Cheetah adapter over (Figure 4) such that the text on the serial number
label is in the proper upright position, the pin order is as shown in the following diagram.

Cheetah SPI Host Adapter User Manual

5

Figure 4 : The Cheetah SPI Host Adapter in the upside
down position.
Pin 1 is located in the lower left corner of the connector and
Pin 10 is located in the upper right corner of the connector.

2.1.2 Order of Leads

1. SS2

2. GND

3. SS3

4. NC/+5V

5. MISO

6. NC/+5V

7. SCLK

8. MOSI

9. SS1

10. GND

2.1.3 Ground

GND (Pin 2):
GND (Pin 10):

It is imperative that the Cheetah adapter's ground lead is connected to the ground of the
target system. Without a common ground between the two, the signaling will be
unpredictable and communication will likely be corrupted. Two ground pins are provided
to ensure a secure ground path.

2.1.4 SPI Pins

SCLK (Pin 7):

Serial Clock – control line that is driven by the master and regulates the flow of the data
bits.

MOSI (Pin 8):

Master Out Slave In – this data line supplies output data from the master which is shifted
into the slave.

Cheetah SPI Host Adapter User Manual

6

MISO (Pin 5):

Master In Slave Out – this data line supplies the output data from the slave to the input
of the master.

SS1 (Pin 9):

Primary Slave Select – the primary control line that allows slaves to be turned on and off
via hardware control. (This SS is in the same location as the SS line of the Aardvark and
Beagle products.)

SS2 (Pin 1):

Second Slave Select – an additional control line that allows slaves to be turned on and
off via hardware control.

SS2 (Pin 3):

Third Slave Select – an additional control line that allows slaves to be turned on and off
via hardware control.

2.1.5 Powering Downstream Devices

It is possible to power a downstream target, such as an SPI EEPROM with the Cheetah
adapter's power (which is provided by the USB bus). It is ideal if the downstream device
does not consume more than 20-30 mA. The Cheetah adapter is compatible with USB
hubs as well as USB host controllers. Bus-powered USB hubs are technically only rated
to provide 100 mA per USB device. If the Cheetah adapter is directly plugged into a USB
host controller or a self-powered USB hub, it can theoretically draw up to 500 mA total,
leaving approximately 375 mA for any downstream target. However, the Cheetah
adapter always reports itself to the host as a low-power device. Therefore, drawing large
amounts of current from the host is not advisable.

2.2 Signal Specifications / Power Consumption

2.2.1 Logic High Levels

All signal levels should be nominally 3.3 volts (+/- 10%) logic high. This allows the
Cheetah adapter to be used with both TTL (5 volt) and CMOS logic level (3.3 volt)
devices. A logic high of 3.3 volts will be adequate for TTL-compliant devices since such
devices are ordinarily specified to accept logic high inputs above approximately 3 volts.

2.2.2 ESD protection

The Cheetah adapter has built-in electrostatic discharge protection to prevent damage to
the unit from high voltage static electricity. This adds a small amount of parasitic
capacitance (approximately 15 pF) to the SPI bus.

Cheetah SPI Host Adapter User Manual

7

2.2.3 Power Consumption

The Cheetah adapter consumes approximately 125 mA of power from the host PC.
However, it reports itself to the host PC as a low-power device. This reporting allows the
Cheetah adapter to be used when its host port is connected to a bus-powered hub which
are only technically specified to supply 100 mA per port. Normally this extra amount of
power consumption should not cause any serious problems since other ports on the hub
are most likely not using their own 100 mA budget. If there are any concerns regarding
the total amount of available current supply, it is advisable to plug the Cheetah adapter
directly into the host PC's USB host port or to use a self-powered hub.

2.3 USB 2.0

The Cheetah adapter is a High-Speed USB 2.0 device. It can be plugged into either a
high-speed or full-speed port. However, a high-speed port must be used to achieve full
throughput at high data rates (SPI clock rates >3 Mbps).

2.4 Temperature Specifications

The Cheetah adapter is designed to be operated at room temperature (10-35°C). The
electronic components are rated for standard commercial specifications (0-70°C).
However, the plastic housing, along with the ribbon and USB cables, may not withstand
the higher end of this range. Any use of the Cheetah device outside the room
temperature specification will void the hardware warranty.

2.5 SPI Signaling Characteristics

2.5.1 SPI Waveforms

The SPI signaling is characterized by the waveforms in Figures 5 and 6.

Cheetah SPI Host Adapter User Manual

8

Figure 5 (above): SPI Timing Requirements

Figure 6 (above): SPI Byte-Level Timing

Table 1 : SPI Timing Parameters

Symbol Parameter Min Max Units

t Clock period 25 10000 ns

t Output Enable to SS control delay 8 8 t

t SS# assertion to first clock edge 6.5 7 t

t SS# deassertion from last clock edge 1.5 2 t

t MOSI propagation time 0 5.8 ns

t MOSI hold time 0.5 0.5 t

t MISO setup time 4.8 N/A ns

Cheetah SPI Host Adapter User Manual

clk

e clk

sac clk

csd clk

op

oh clk

is

9

t MISO hold time 0 N/A ns

t User Insertable Delay 8 2 t

Notes:

1. The above timings only correspond to actions performed within a given SPI
transaction. Actions that span transactions will be subject to inter-transaction USB
delays. However, many SPI packets (delineated by SS assert/deassert) can be
sent within a single transaction.

2. User insertable delays are quantized in blocks of 8 clock cycles.

3. A user delay can be inserted to stretch t , t or, t as needed.

4. There is normally no gap between data bytes, although a user delay can be
inserted between bytes if the target SPI slave device needs time to process each
received byte.

5. The MOSI hold time (t) can be longer than half of one clock period, depending
on the exact MOSI propagation time. However, the maximum guaranteed hold
time is 0.5*t .

6. The parameters t and t differ based on mode and polarity. For example, t
 = 6.5 and t = 2.0 clock periods for modes 0 and 2. Likewise, t = 7.0 and t
= 1.5 clock periods for modes 1 and 3.

2.5.2 Speeds

The Cheetah device has a flexible clock generator that can produce SPI clock rates at a
very fine granularity. The minimum bit rate is 100 Hz and the maximum settable bit rate
is 50 MHz. Many intermediate bit rates are available, often with a 1-2 kHz precision.

The Cheetah software and hardware have been meticulously designed to ensure
maximal average throughput over the USB bus. In other words, if the SPI clock rate is
set to 30 MHz, the average data rate across an entire transaction will be nearly 30 Mbps,
end-to-end from host PC to SPI target device. This property holds even for very large
transactions ranging from hundreds of kilobytes to many megabytes long. This high
throughput feature is only possible within a single transaction. Multiple transactions will
suffer unavoidable USB bus latencies. Hence, the best throughput can be achieved for
single transactions that transfer a large number of bytes at a time.

Rarely, there can be delays across the USB bus even within a transaction. While there
will be a delay in the outgoing SCLK while the Cheetah adapter is paused, waiting for

Cheetah SPI Host Adapter User Manual

ih

ud
32

clk

e sac csd

oh

clk

sac csd sac

csd sac csd

10

more data to shift out, the average throughput will not be diminished appreciably since
such events happen so infrequently.

2.5.3 Pin Driving

The Cheetah adapter can be connected or disconnected from the bus through software
control. Namely, the device can either drive its outputs or place them in high impedance
mode. When in high impedance mode the Cheetah device will hold the last value of the
output lines with very weak pull-up or pull-down resistances. When connected to the bus,
the Cheetah adapter persistently holds the state of the SS lines across different shift
transactions. Hence, if the SS line is left asserted after one transaction, it will stay
asserted until modified in a subsequent transaction.

Cheetah SPI Host Adapter User Manual

11

3 Software

3.1 Compatibility

3.1.1 Overview

The Cheetah software is offered as a 32-bit or 64-bit Dynamic Linked Library (or shared
object). The specific compatibility for each operating system is discussed below. Be sure
the device driver has been installed before plugging in the Cheetah adapter.

3.1.2 Windows Compatibility

The Cheetah software is compatible with Windows XP (SP2 or later, 32-bit and 64-bit),
Windows Vista (32-bit and 64-bit), and Windows 7 (32-bit and 64-bit). Windows 2000
and legacy 16-bit Windows 95/98/ME operating systems are not supported.

3.1.3 Linux Compatibility

The Cheetah software is compatible with all standard 32-bit and 64-bit distributions of
Linux with kernel 2.6 and integrated USB support. When using the 32-bit library on a 64-
bit distribution, the appropriate 32-bit system libraries are also required.

3.1.4 Mac OS X Compatibility

The Cheetah software is compatible with Intel versions of Mac OS X 10.5 Leopard,
10.6 Snow Leopard, 10.7 Lion, 10.8 Mountain Lion, and 10.9 Mavericks. Installation of
the latest available update is recommended.

3.2 Windows USB Driver

3.2.1 Driver Installation

To install the appropriate USB communication driver under Windows, use the Total
Phase USB Driver Installer before plugging in any device. The driver installer can be
found either on the CD-ROM (use the HTML based guide that is opened when the CD is
first loaded to locate the Windows installer), or in the Downloads section of the Cheetah
adapter product page on the Total Phase website.

After the driver has been installed, plugging in a Cheetah adapter for the first time will
cause the adapter to be installed and associated with the correct driver. The following

Cheetah SPI Host Adapter User Manual

12

steps describe the feedback the user should receive from Windows after a Cheetah
adapter is plugged into a system for the first time:

Windows XP:

1. The Found New Hardware notification bubble will pop up from the system tray
and state that the "Total Phase Cheetah Host Adapter" has been detected. Note
that installation may take a while (30-60 seconds per device).

2. When the installation is complete, the Found New Hardware notification bubble
will again pop up and state that "your new hardware is installed and ready to use."

Windows Vista/7:

1. A notification bubble will pop up from the system tray and state that Windows is
"installing device driver software."

2. When the installation is complete, the notification bubble will again pop up and
state that the "device driver software installed successfully."

To confirm that the device was correctly installed, check that the device appears in the
Device Manager. To navigate to the "Device Manager" screen, select "Control Panel |
System Properties | Hardware | Device Manager" for Windows XP or select "Control
Panel | Hardware and Sound | Device Manager" for Windows Vista/7. The Cheetah
adapter should appear under the Universal Serial Bus Controllers section for Windows
XP/Vista/7.

3.2.2 Driver Removal

The USB communication driver can be removed from the operating system by using the
Windows program removal utility. Instructions for using this utility can be found below.
Alternatively, the Uninstall option found in the driver installer can also be used to remove
the driver from the system.

Note: It is critical that all Total Phase devices have been removed from your system
before removing the USB drivers.

Windows XP:

1. Select "Control Panel | Add or Remove Programs"

2. Select "Total Phase USB Driver" and select "Change/Remove"

Cheetah SPI Host Adapter User Manual

13

3. Follow the instructions in the uninstaller

Windows Vista/7:

1. Select "Control Panel | Uninstall a program"

2. Right-click on "Total Phase USB Driver " and select "Uninstall/Change"

3. Follow the instructions in the uninstaller

3.3 Linux USB Driver

As of version 3.08, the Cheetah communications layer under Linux no longer requires a
specific kernel mode or user mode driver to operate. This differs from previous versions
that required the user to ensure independently that the libusb library was installed on the
system. See the README.txt in the API package for more details.

Most modern Linux distributions use the udev subsystem to help manipulate the
permissions of various system devices. This is the preferred way to support access to
the Cheetah adapter such that the device is accessible by all of the users on the system
upon device plug-in.

For legacy systems, there are two different ways to access the Cheetah adapter, through
USB hotplug or by mounting the entire USB filesystem as world writable. Both require
that /proc/bus/usb is mounted on the system which is the case on most standard
distributions.

3.3.1 UDEV

Support for udev requires a single configuration file that is available on the software CD,
and also listed on the Total Phase website for download. This file is 99-
totalphase.rules. Please follow the following steps to enable the appropriate
permissions for the Cheetah adapter.

1. As superuser, unpack 99-totalphase.rules to /etc/udev/rules.d

2. chmod 644 /etc/udev/rules.d/99-totalphase.rules

Cheetah SPI Host Adapter User Manual

14

3. Unplug and replug your Cheetah adapter(s)

3.3.2 USB Hotplug

USB hotplug requires two configuration files which are available on the software CD, and
also listed on the Total Phase website for download. These files are: cheetah and
cheetah.usermap. Please follow the following steps to enable hotplugging.

1. As superuser, unpack cheetah and cheetah.usermap to /etc/hotplug/
usb

2. chmod 755 /etc/hotplug/usb/cheetah

3. chmod 644 /etc/hotplug/usb/cheetah.usermap

4. Unplug and replug your Cheetah adapter(s)

5. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

3.3.3 World-Writable USB Filesystem

Finally, here is a last-ditch method for configuring your Linux system in the event that
your distribution does not have udev or hotplug capabilities. The following procedure is
not necessary if you were able to exercise the steps in the previous subsections.

Often, the /proc/bus/usb directory is mounted with read-write permissions for root
and read-only permissions for all other users. If an non-privileged user wishes to use the
Cheetah adapter and software, one must ensure that /proc/bus/usb is mounted with
read-write permissions for all users. The following steps can help setup the correct
permissions. Please note that these steps will make the entire USB filesystem world
writable.

1. Check the current permissions by executing the following command:
ls -al /proc/bus/usb/001

2. If the contents of that directory are only writable by root, proceed with the
remaining steps outlined below.

3. Add the following line to the /etc/fstab file:

 none /proc/bus/usb usbfs defaults,devmode=0666 0 0

4. Unmount the /proc/bus/usb directory using "umount"

5. Remount the /proc/bus/usb directory using "mount"

Cheetah SPI Host Adapter User Manual

15

6. Repeat step 1. Now the contents of that directory should be writable by all users.

7. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

3.4 Mac OS X USB Driver

The Cheetah communications layer under Mac OS X does not require a specific kernel
driver to operate. Both Mac OS X 10.4 Tiger and 10.5 Leopard are supported. It is
typically necessary to ensure that the user running the software is currently logged into
the desktop. No further user configuration should be necessary.

3.5 USB Port Assignment

The Cheetah adapter is assigned a port on a sequential basis. The first adapter is
assigned to port 0, the second is assigned to port 1, and so on. If a Cheetah adapter is
subsequently removed from the system, the remaining adapters shift their port numbers
accordingly. Hence with n Cheetah adapters attached, the allocated ports will be
numbered from 0 to n-1.

3.5.1 Detecting Ports

As described in following API documentation chapter, the ch_find_devices routine
can be used to determine the mapping between the physical Cheetah adapter and their
port numbers.

3.6 Cheetah Dynamically Linked Library

3.6.1 DLL Philosophy

The Cheetah DLL provides a robust approach to allow present-day Cheetah-enabled
applications to interoperate with future versions of the device interface software without
recompilation. For example, take the case of a graphical application that is written to
communicate SPI through a Cheetah device. At the time the program is built, the
Cheetah software is released as version 1.2. The Cheetah interface software may be
improved many months later resulting in increased performance and/or reliability; it is
now released as version 1.3. The original application need not be altered or recompiled.
The user can simply replace the old Cheetah DLL with the newer one. How does this
work? The application contains only a stub which in turn dynamically loads the DLL on
the first invocation of any Cheetah API function. If the DLL is replaced, the application
simply loads the new one, thereby utilizing all of the improvements present in the
replaced DLL.

On Linux, the DLL is technically known as a shared object (SO).

Cheetah SPI Host Adapter User Manual

16

3.6.2 DLL Location

Total Phase provides language bindings that can be integrated into any custom
application. The default behavior of locating the Cheetah DLL is dependent on the
operating system platform and specific programming language environment. For
example, for a C or C++ application, the following rules apply:

On a Windows system, this is as follows:

1. The directory from which the application binary was loaded.

2. The applications current directory.

3. 32-bit system directory (for a 32-bit application). Examples:

◦ c:\Windows\System32 [Windows XP/Vista/7 32-bit]

◦ C:\Windows\System64 [Windows XP 64-bit]

◦ c:\Windows\SysWow64 [Windows Vista/7 64-bit]

4. 64-bit system directory (for a 64-bit application). Examples:

◦ C:\Windows\System32 [Windows XP/Vista/7 64-bit]

5. The Windows directory. (Ex: c:\Windows)

6. The directories listed in the PATH environment variable.

On a Linux system this is as follows:

1. First, search for the shared object in the application binary path. If the /proc
filesystem is not present, this step is skipped.

2. Next, search in the applications current working directory.

3. Search the paths explicitly specified in LD_LIBRARY_PATH.

4. Finally, check any system library paths as specified in /etc/ld.so.conf and
cached in /etc/ld.so.cache.

On a Mac OS X system this is as follows:

1. First, search for the shared object in the application binary path.

2. Next, search in the applications current working directory.

3. Search the paths explicitly specified in DYLD_LIBRARY_PATH.

Cheetah SPI Host Adapter User Manual

17

4. Finally, check the /usr/lib and /usr/local/lib system library paths.

If the DLL is still not found, the CH_UNABLE_TO_LOAD_LIBRARY error will be returned
by the binding function.

3.6.3 DLL Versioning

The Cheetah DLL checks to ensure that the firmware of a given Cheetah device is
compatible. Each DLL revision is tagged as being compatible with firmware revisions
greater than or equal to a certain version number. Likewise, each firmware version is
tagged as being compatible with DLL revisions greater than or equal to a specific version
number.

Here is an example.

 DLL v1.20: compatible with Firmware >= v1.15
 Firmware v1.30: compatible with DLL >= v1.20

Hence, the DLL is not compatible with any firmware less than version 1.15 and the
firmware is not compatible with any DLL less than version 1.20. In this example, the
version number constraints are satisfied and the DLL can safely connect to the target
firmware without error. If there is a version mismatch, the API calls to open the device
will fail. See the API documentation for further details.

3.7 Rosetta Language Bindings: API Integration into
Custom Applications

3.7.1 Overview

The Cheetah Rosetta language bindings make integration of the Cheetah API into
custom applications simple. Accessing Cheetah functionality simply requires function
calls to the Cheetah API. This API is easy to understand, much like the ANSI C library
functions, (e.g., there is no unnecessary entanglement with the Windows messaging
subsystem like development kits for some other embedded tools).

First, choose the Rosetta bindings appropriate for the programming language. Different
Rosetta bindings are included with the software distribution on the distribution CD. They
can also be found in the software download package available on the Total Phase
website. Currently the following languages are supported: C/C++, Python, Visual
Basic 6, Visual Basic .NET, and C#.

Next, follow the instructions for each language binding on how to integrate the bindings
with your application build setup. As an example, the integration for the C language
bindings is described below. (For information on how to integrate the bindings for other

Cheetah SPI Host Adapter User Manual

18

languages, please see the example code included on the distribution CD and also
available for download on the Total Phase website.)

1. Include the cheetah.h file included with the API software package in any C or C
++ source module. The module may now use any Cheetah API call listed in
cheetah.h.

2. Compile and link cheetah.c with your application. Ensure that the include path
for compilation also lists the directory in which cheetah.h is located if the two
files are not placed in the same directory.

3. Place the Cheetah DLL, included with the API software package, in the same
directory as the application executable or in another directory such that it will be
found by the previously described search rules.

3.7.2 Versioning

Since a new Cheetah DLL can be made available to an already compiled application, it
is essential to ensure the compatibility of the Rosetta binding used by the application
(e.g., cheetah.c) against the DLL loaded by the system. A system similar to the one
employed for the DLL-Firmware cross-validation is used for the binding and DLL
compatibility check.

Here is an example.

 DLL v1.20: compatible with Binding >= v1.10
 Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is
performed within the binding. If there is a version mismatch, the API function will return
an error code, CH_INCOMPATIBLE_LIBRARY.

3.7.3 Customizations

While the provided language bindings stubs are fully functional, it is possible to modify
the code found within this file according to specific requirements imposed by the
application designer.

For example, in the C bindings one can modify the DLL search and loading behavior to
conform to a specific paradigm. See the comments in cheetah.c for more details.

Cheetah SPI Host Adapter User Manual

19

3.8 Application Notes

3.8.1 Threading

The Cheetah DLL is designed for single-threaded environments so as to allow for
maximum cross-platform compatibility. If the application design requires multi-threaded
use of the Cheetah functionality, each Cheetah API call can be wrapped with a thread-
safe locking mechanism before and after invocation.

It is the responsibility of the application programmer to ensure that the Cheetah open
and close operations are thread-safe and cannot happen concurrently with any other
Cheetah operations. However, once a Cheetah device is opened, all operations to that
device can be dispatched to a separate thread as long as no other threads access that
same Cheetah device.

3.8.2 USB Scheduling Delays

More specifically, each API call that is used to send data to and from the Cheetah
adapter can incur up to 125 µs (1 ms) in delay on the PC host for USB High Speed (Full
Speed) connections. This is caused by the inherent design of the USB architecture. The
operating system will queue any outgoing USB transfer request on the host until the next
USB frame period. The frame period is 125 µs (1 ms). Thus, if the application attempts to
execute several transactions in rapid sequence there can be 1-2 ms delay between each
transaction plus any additional process scheduling delays introduced by the operating
system. The best throughput can be achieved for single transactions that transfer a large
number of bytes at a time.

Cheetah SPI Host Adapter User Manual

20

4 Firmware

4.1 Philosophy

The firmware included with the Cheetah adapter provides for the analysis of the
supported protocols. It is installed at the factory during manufacturing. Updates to this
firmware are provided through a device upgrade utility. The Cheetah software
automatically detects firmware compatibility and will inform the user if an upgrade is
required.

4.2 Procedure

Firmware upgrades should be conducted using the procedure specified in the
README.txt that accompanies the particular firmware revision.

Cheetah SPI Host Adapter User Manual

21

5 API Documentation

5.1 Introduction

The API documentation describes the Cheetah Rosetta C bindings.

5.2 General Data Types

The following definitions are provided for convenience.

 typedef unsigned char u08;
 typedef unsigned short u16;
 typedef unsigned int u32;
 typedef unsigned long long u64;
 typedef signed char s08;
 typedef signed short s16;
 typedef signed int s32;
 typedef signed long long s64;

5.3 Notes on Status Codes

Most of the Cheetah API functions return a status or error code back to the caller. The
complete list of status codes is provided at the end of this chapter. All of the error codes
are assigned values less than 0, separating these responses from any numerical values
returned by certain API functions.

Each API function can return one of two error codes with respect to the loading of the
Cheetah DLL, CH_UNABLE_TO_LOAD_LIBRARY and CH_INCOMPATIBLE_LIBRARY. If
these status codes are received, refer to the previous sections in this datasheet that
discuss the DLL and API integration of the Cheetah software. Furthermore, all API calls
can potentially return the errors CH_UNABLE_TO_LOAD_DRIVER or
CH_INCOMPATIBLE_DRIVER. If either of these errors are seen, please make sure the
driver is installed and of the correct version. Where appropriate, compare the language
binding versions (e.g., CH_HEADER_VERSION found in cheetah.h and
CH_CFILE_VERSION found in cheetah.c) to verify that there are no mismatches.
Next, ensure that the Rosetta language binding (e.g., cheetah.c and cheetah.h) are
from the same release as the Cheetah DLL. If all of these versions are synchronized and
there are still problems, please contact Total Phase support for assistance.

Note that any API function that accepts a Cheetah handle can potentially return the error
code CH_INVALID_HANDLE
if the handle does not correspond to a valid Cheetah device that has already been
opened. If this error is received, check the application code to ensure that the ch_open

Cheetah SPI Host Adapter User Manual

22

command returned a valid handle and that this handle was not corrupted before being
passed to the offending API function.

Finally, any API call that communicates with a Cheetah device can also return the error
CH_COMMUNICATION_ERROR. This means that while the Cheetah handle is valid and
the communication channel is open, there was an error communicating with the device.
This is possible if the device was unplugged while being used.

These common status responses are not reiterated for each function. Only the error
codes that are specific to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed
following the API documentation.

5.4 General

5.4.1 Interface

Find Devices (ch_find_devices)

 int ch_find_devices (int nelem,
 u16 * devices);

Get a list of ports to which Cheetah devices are attached.

Arguments

nelem Maximum size of the array

devices array into which the port numbers are returned

Return Value

This function returns the number of devices found, regardless of the array size.

Specific Error Codes

None.

Details

Each element of the array is written with the port number.

Devices that are in use are OR'ed with CH_PORT_NOT_FREE (0x8000). Under
Linux, such devices correspond to Cheetah adapters that are currently in use.
Under Windows, such devices are currently in use, but it is not known if the device
is a Cheetah adapter.

Cheetah SPI Host Adapter User Manual

23

Example:

Devices are attached to port 0, 1, 2.
Ports 0 and 2 are available, and port 1 is in-use.
devices = { 0x0000, 0x8001, 0x0002 }

If the input array is NULL, it is not filled with any values.

If there are more devices than the array size (as specified by nelem), only the first
nelem port numbers will be written into the array.

Find Devices (ch_find_devices_ext)

 int ch_find_devices_ext (int num_devices,
 u16 * devices,
 int num_ids,
 u32 * unique_ids);

Get a list of ports and unique IDs to which Cheetah devices are attached.

Arguments

num_devices maximum number of devices to return

devices array into which the port numbers are returned

num_ids maximum number of device IDs to return

unique_ids array into which the unique IDs are returned

Return Value

This function returns the number of devices found, regardless of the array size.

Specific Error Codes

None.

Details

This function is the same as ch_find_devices() except that it also returns the
unique IDs of each Cheetah device. The IDs are guaranteed to be non-zero if valid.

The IDs are the unsigned integer representation of the 10-digit serial numbers.

The number of devices and IDs returned in each of their respective arrays is
determined by the minimum of num_devices and num_ids. However, if either
array is NULL, the length passed in for the other array is used as-is, and the NULL

Cheetah SPI Host Adapter User Manual

24

array is not populated. If both arrays are NULL, neither array is populated, but the
number of devices found is still returned.

Open a Cheetah device (ch_open)

 Cheetah ch_open (int port_number);

Open a connection to the Cheetah at the given port.

Arguments

port_number The Cheetah port number. This port number is the the
same as the one obtained from the ch_find_devices
function. It is a zero-based number.

Return Value

This function returns a Cheetah handle, which is guaranteed to be greater than zero
if valid.

Specific Error Codes

CH_UNABLE_TO_OPEN The specified port is not connected to a
Cheetah device or the port is already in
use.

CH_INCOMPATIBLE_DEVICE There is a version mismatch between the
DLL and the hardware. The DLL is not of a
sufficient version for interoperability with
the hardware version or vice versa. See
ch_open_ext() for more information.

Details
This function is recommended for use in simple applications where extended
information is not required. For more complex applications, the use of
ch_open_ext() is recommended.

Open a Cheetah device (ch_open_ext)

 Cheetah ch_open_ext (int port_number, CheetahExt *ch_ext);

Open the Cheetah port, returning extended information in the supplied structure.

Arguments

port_number same as ch_open

ch_ext pointer to pre-allocated structure for extended version
information available on open

Cheetah SPI Host Adapter User Manual

25

Return Value

This function returns a Cheetah handle, which is guaranteed to be greater than zero
if valid.

Specific Error Codes

CH_UNABLE_TO_OPEN The specified port is not connected to a
Cheetah device or the port is already in
use.

CH_INCOMPATIBLE_DEVICE There is a version mismatch between the
DLL and the hardware. The DLL is not of a
sufficient version for interoperability with the
hardware version or vice versa. The version
information will be available in the memory
pointed to by ch_ext.

Details

If 0 is passed as the pointer to the structure ch_ext, this function will behave
exactly like ch_open().

The CheetahExt structure is described below:

struct CheetahExt {
 CheetahVersion version;
 /* Features of this device. */
 int features;
}

The CheetahVersion structure describes the various version dependencies of
Cheetah components. It can be used to determine which component caused an
incompatibility error.

struct CheetahVersion {
 /* Software and hardware versions. */
 u16 software;
 u16 firmware;
 u16 hardware;

 /*
 * Hardware revisions that are compatible with this
 * software version. The top 16 bits gives the maximum
 * accepted hardware revision. The lower 16 bits gives
 * the minimum accepted hardware revision.

Cheetah SPI Host Adapter User Manual

26

 */
 u32 hw_revs_for_sw;

 /*
 * Firmware revisions that are compatible with this
 * software version. The top 16 bits gives the maximum
 * accepted firmware revision. The lower 16 bits gives
 * the minimum accepted firmware revision.
 */
 u32 fw_revs_for_sw;

 /*
 * Driver revisions that are compatible with this
 * software version. The top 16 bits gives the maximum
 * accepted driver revision. The lower 16 bits gives
 * the minimum accepted driver revision. This version
 * checking is currently only pertinent for WIN32
 * platforms.
 */
 u32 drv_revs_for_sw;

 /*
 * Software requires that the API interface must
 * be >= this version.
 */
 u16 api_req_by_sw;
};

All version numbers are of the format:

(major << 8) | minor
example: v1.20 would be encoded as 0x0114.

The structure is zeroed before the open is attempted. It is filled with whatever
information is available. For example, if the hardware version is not filled, then the
device could not be queried for its version number.

This function is recommended for use in complex applications where extended
information is required. For simpler applications, the use of ch_open() is
recommended.

Close a Cheetah (ch_close)

 int ch_close (Cheetah cheetah);

Close the connection to the given Cheetah.

Cheetah SPI Host Adapter User Manual

27

Arguments

cheetah handle of a Cheetah adapter to be closed

Return Value

The number of adapters closed is returned on success. This will usually be 1.

Specific Error Codes

None.

Details

If the handle argument is zero, the function will attempt to close all possible
handles, thereby closing all open Cheetah adapters. The total number of Cheetah
adapters closed is returned by the function.

Get Port (ch_port)

 int ch_port (Cheetah cheetah);

Return the port number for this Cheetah handle.

Arguments

cheetah handle of a Cheetah adapter

Return Value

The port number corresponding to the given handle is returned. It is a zero-based
number.

Specific Error Codes

None.

Details

None.

Get Unique ID (ch_unique_id)

 u32 ch_unique_id (Cheetah cheetah);

Return the unique ID of the given Cheetah device.

Arguments

Cheetah SPI Host Adapter User Manual

28

cheetah handle of a Cheetah adapter

Return Value

This function returns the unique ID for this Cheetah adapter. The IDs are
guaranteed to be non-zero if valid. The ID is the unsigned integer representation of
the 10-digit serial number.

Specific Error Codes

None.

Details

None.

Status String (ch_status_string)

 const char *ch_status_string (int status);

Return the status string for the given status code.

Arguments

status status code returned by a Cheetah API function

Return Value

This function returns a human readable string that corresponds to status. If the code
is not valid, it returns a NULL string.

Specific Error Codes

None.

Details

None.

Version (ch_version)

 int ch_version (Cheetah cheetah, CheetahVersion *version);

Return the version matrix for the device attached to the given handle.

Arguments

cheetah handle of a Cheetah adapter

Cheetah SPI Host Adapter User Manual

29

version pointer to pre-allocated structure

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details

If the handle is 0 or invalid, only the software version is set.

See the details of ch_open_ext for the definition of CheetahVersion.

Sleep (ch_sleep_ms)

 u32 ch_sleep_ms (u32 milliseconds);

Sleep for given amount of time.

Arguments

milliseconds number of milliseconds to sleep

Return Value

This function returns the number of milliseconds slept.

Specific Error Codes

None.

Details

This function provides a convenient cross-platform function to sleep the current
thread using standard operating system functions.

The accuracy of this function depends on the operating system scheduler. This
function will return the number of milliseconds that were actually slept.

Target Power (ch_target_power)

 int ch_target_power (Cheetah cheetah, u08 power_mask);

Activate/deactivate target power pins 4 and 6.

Cheetah SPI Host Adapter User Manual

30

Arguments

cheetah handle of a Cheetah adapter

power_mask enumerated values specifying power pin state. See Table 2.

Table 2 : power_mask enumerated types

CH_TARGET_POWER_OFF Disable target power pins

CH_TARGET_POWER_ON Enable target power pins

CH_TARGET_POWER_QUERY Queries the target power pin state

Return Value

The current state of the target power pins on the Cheetah adapter will be returned.
The configuration will be described by the same values as in the table above.

Specific Error Codes

None.

Details

Both target power pins are controlled together. Independent control is not
supported. This function may be executed in any operation mode.

Host Interface Speed (ch_host_ifce_speed)

 int ch_host_ifce_speed (Cheetah cheetah);

Return the interface host speed.

Arguments

cheetah handle of a Cheetah adapter

Return Value

This function returns enumerated values specifying the USB speed at which the
host computer is communicating with the given Cheetah device. See Table 3.

Table 3 : Host interface speed enumerated types

CH_HOST_IFCE_FULL_SPEED Full speed (12 Mbps) interface

CH_HOST_IFCE_HIGH_SPEED High Speed (480 Mbps) interface

Specific Error Codes

Cheetah SPI Host Adapter User Manual

31

None.

Details

Used to determine the USB communication rate between the Cheetah device and
the host. A High Speed USB interface is highly recommended to take full advantage
of the high speed SPI interface.

5.5 SPI Interface

5.5.1 SPI Overview

In order to use the Cheetah API to send SPI data across the bus at high speed,
commands are accumulated in a queue until a call is made to batch shift all of the
queued commands. The sequence of commands in the command queue for a typical
SPI transaction is:

1. Call ch_spi_queue_clear to clear the command queue.

2. Call ch_spi_queue_oe to add a command to the queue to enable the Cheetah
devices outputs on the SPI bus.

3. Call ch_spi_queue_ss to add a command to the queue to enable the slave
select signal.

4. Call ch_spi_queue_byte and ch_spi_queue_array to queue data to be
sent across the SPI bus.

5. Call ch_spi_queue_ss to queue a command to disable the slave select signal.

6. Optionally, call ch_spi_queue_oe to queue a command to disable the outputs
of the Cheetah device.

7. Call ch_spi_batch_shift to send the accumulated accumulated commands
across the SPI bus.

Please note that the queue is not cleared after it has been executed. This allows the
same queue to be executed multiple times without re-queuing commands. The only way
to clear a queue is by calling ch_spi_queue_clear.

If the user wishes to repeat the exact same shift sequence on the bus, the last step can
be executed without the preceding ones. Also, the OE enable commands and SS assert/
deassert commands are held persistent on the Cheetah device. For example, if the SS
line is left asserted after one transaction, it will stay asserted until modified in a
subsequent transaction.

Cheetah SPI Host Adapter User Manual

32

The data sent from the slave device to the Cheetah device across the MISO line will be
filled into the data_in parameter of the ch_spi_batch_shift function. Also,
ch_spi_batch_length can be called prior to calling ch_spi_batch_shift to find
out how large of an array needs to be allocated for the data_in argument.

The SPI master and slave must both be configured to use the same bit protocol (mode).
Prior to sending any data across the SPI bus, the application should call
ch_spi_configure and ch_spi_bitrate to set the proper configuration for the SPI
communication.

This architecture for the Cheetah API allows for maximum flexibility of the control lines
(SS1, SS2, and SS3) and provides for a mechanism to avoid expensive USB scheduling
delays (as described in a previous section of this datasheet). For example, one can send
several separate SPI packets with the following sequence:

1. Assert the OE.

2. Assert the appropriate SS, queue the data, and deassert SS.

3. Add optional delay on the bus.

4. Assert the appropriate SS, queue the data, and deassert SS.

5. Repeat the last two steps as many times as desired.

6. Call the batch shift function.

This grouping of packets into a single transactions can be very efficient for programming
devices such as EEPROMs or flash memories that require a separate SPI packets for
each page that needs to be written. The delay step would then correspond to the page
write time specified in the memory's datasheet.

Note that the ch_spi_batch_shift function will only return to the caller after the
entire queue has been shifted on the SPI bus. There is an alternative, non-blocking
implementation that can be used in lieu of ch_spi_batch_shift. The functions
ch_spi_async_submit and ch_spi_async_collect allow the user to submit a
batch queue and perform other tasks (including assembling and submitting a subsequent
queue) before collecting the results of the initial SPI shift operation. This is an advanced
feature that has traditionally only been needed by a few users; a detailed description is
provided in the relevant API documentation. The error code CH_SPI_ASYNC_PENDING
can be returned by other synchronous functions in the event that asynchronous batches
are pending (i.e., have not been yet collected).

Cheetah SPI Host Adapter User Manual

33

5.5.2 SPI Functions

Set Bitrate (ch_spi_bitrate)

 int ch_spi_bitrate (Cheetah cheetah, int bitrate_khz);

Set the SPI bitrate in kilohertz.

Arguments

cheetah handle of a Cheetah adapter

bitrate_khz the requested bitrate in kHz.

Return Value

This function returns the actual bitrate set.

Specific Error Codes

None.

Details

The power-on default bitrate is 1 MHz.

Only certain discrete bitrates are supported by the Cheetah adapter. As such, this
actual bitrate set will be less than or equal to the requested bitrate unless the
requested value is less than 100 kHz, in which case the Cheetah adapter will default
to 100 kHz. The maximum supported speed for the Cheetah adapter is 50 MHz.

If bitrate_khz is 0, the function will set the bit rate to the minimum value,
100 kHz.

Configure SPI Bus Parameters (ch_spi_configure)

 int ch_spi_configure (Cheetah cheetah,
 CheetahSpiPolarity polarity,
 CheetahSpiPhase phase,
 CheetahSpiBitorder bitorder,
 u08 ss_polarity);

Configure the SPI interface.

Arguments

cheetah handle of a Cheetah adapter

Cheetah SPI Host Adapter User Manual

34

polarity the polarity of the clock signal (see Table 4)

phase the phase of the clock signal to sample on (see Table 5)

bitorder the bit order, big endian or little endian (see Table 6)

ss_polarity the polarity of the slave select signals

Table 4 : polarity enumerated types

CH_SPI_POL_RISING_FALLING Clock idle low, active high

CH_SPI_POL_FALLING_RISING Clock idle high, active low

Table 5 : phase enumerated types

CH_SPI_PHASE_SAMPLE_SETUP Sample on the leading edge of the clock signal

CH_SPI_PHASE_SETUP_SAMPLE Sample on the trailing edge of the clock signal

Table 6 : bitorder enumerated types

CH_SPI_BITORDER_MSB Big-endian bit order

CH_SPI_BITORDER_LSB Little-endian bit order

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details

These configuration parameters specify how to clock the bits that are sent and
received on the Cheetah SPI interface.

The polarity option specifies which transition constitutes the leading edge and
which transition is the falling edge. For example, CH_SPI_POL_RISING_FALLING
would configure the SPI to idle the SCLK clock line low. The clock would then
transition low-to-high on the leading edge and high-to-low on the trailing edge.

The phase option determines whether to sample or setup on the leading edge of
the clock signal. For example, CH_SPI_PHASE_SAMPLE_SETUP would configure
the SPI to sample on the leading edge and setup on the trailing edge of the clock.

Cheetah SPI Host Adapter User Manual

35

For example, mode 3 in the figure found in the "SPI Background" chapter would
correspond to the pair (CH_SPI_POL_FALLING_RISING,
CH_SPI_PHASE_SETUP_SAMPLE).

The bitorder option is used to indicate whether LSB or MSB is shifted first.

The ss_polarity option is a bit mask that indicates whether each SS line is active
high or active low. For example, setting ss_polarity to 0x05 would mean that
SS3 and SS1 are active high and SS2 is active low.

Clear Batch Queue (ch_spi_queue_clear)

 int ch_spi_queue_clear (Cheetah cheetah);

Clear the batch queue.

Arguments

cheetah handle of a Cheetah adapter

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details

All queued data and commands are removed from the queue.

Queue the Cheetah Output Enable (ch_spi_queue_oe)

 int ch_spi_queue_oe (Cheetah cheetah, u08 oe);

Enable/disable the outputs.

Arguments

cheetah handle of a Cheetah adapter

oe 0 to disable the outputs, and 1 to enable

Return Value

A Cheetah status code is returned with CH_OK on success.

Cheetah SPI Host Adapter User Manual

36

Specific Error Codes

None.

Details

This function enables and disables the outputs on the Cheetah device. When
enabled, the Cheetah device connects to the SPI bus and is ready to drive the
signal lines. When the Cheetah output enable is disabled, the device disconnects
from the bus and each signal line is held at their current values with very weak
internal pull-up or pull-down on the Cheetah device.

Call this function to enable the Cheetah outputs before calling any of the other
queue functions.

Queue Slave Select Signals (ch_spi_queue_ss)

 int ch_spi_queue_ss (Cheetah cheetah,
 u08 active);

Queue Slave Select assertion/deassertion.

Arguments

cheetah handle of a Cheetah adapter

active a bit mask based on the 3 SS lines where 1 corresponds to
assertion and 0 to deassertion

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details

This function adds a command to the batch queue to assert/deassert the SPI slave
select lines. The active parameter is a bit mask. For example, setting active to
0x05 would mean that SS3 and SS1 are asserted and SS2 is deasserted. The
polarity of the slave select is determined from a previous call to
ch_spi_configure.

Queue a Byte (ch_spi_queue_byte)

 int ch_spi_queue_byte (Cheetah cheetah,

Cheetah SPI Host Adapter User Manual

37

 int count,
 u08 data_out);

Queue a byte value to be sent across the bus one or more times.

Arguments

cheetah handle of a Cheetah adapter

count number of bytes to put in queue

data_out value of the byte to queue

Return Value

Returns the actual number of times the byte in data_out was added to the queue.
This should equal count.

Specific Error Codes

None.

Details

Queues count number of bytes to send and sets each byte to the value of
data_out.

For this command, and the ch_spi_queue_array command, the polarity, phase,
and bit ordering will be determined by the configuration set with the
ch_spi_configure function.

Queue a Byte Array (ch_spi_queue_array)

 int ch_spi_queue_array (Cheetah cheetah,
 u16 num_bytes,
 const u08 * data_out);

Queue an array of bytes to be sent across the bus.

Arguments

cheetah handle of a Cheetah adapter

num_bytes number of bytes in data_out

data_out byte array to queue

Return Value

Returns the number of bytes queued. This should equal num_bytes.

Cheetah SPI Host Adapter User Manual

38

Specific Error Codes

None.

Details

The array will be processed with a minimal run length encoding algorithm, so
repeated sequences of single bytes will be sent more efficiently. This helps reduce
outgoing (host to Cheetah) bandwidth on the USB bus.

For this command, and the ch_spi_queue_byte command, the polarity, phase,
and bit ordering will be determined by the configuration set with the
ch_spi_configure function.

Queue a Delay in Cycles (ch_spi_queue_delay_cycles)

 int ch_spi_queue_delay_cycles (Cheetah cheetah,
 int cycles);

Queue a delay value on the bus in units of clock cycles.

Arguments

cheetah handle of a Cheetah adapter

cycles cycles of delay to add to the outbound shift

Return Value

Returns the actual number of cycles of delay that were queued.

Specific Error Codes

None.

Details

Queues cycles amount of delay on the bus. These are in units of clock cycles as
set with ch_spi_bitrate. The delays can only be queued in multiples of 8. The

Cheetah SPI Host Adapter User Manual

39

function will return the actual number of cycles queued. The requested number of
cycles will be rounded up to the next multiple of 8.

The requested number of cycles must be greater than zero and less than or equal to
2 -9. If the requested number of cycles is out of bounds, no delay is queued and
the function will return 0.

Queue a Delay in Nanoseconds (ch_spi_queue_delay_ns)

 int ch_spi_queue_delay_ns (Cheetah cheetah,
 int nanoseconds);

Queue a delay value on the bus in units of nanoseconds.

Arguments

cheetah handle of a Cheetah adapter

nanoseconds amount of time for delay in nanoseconds

Return Value

Returns the actual number of nanoseconds of delay that were queued.

Specific Error Codes

None.

Details

Queues nanoseconds amount of delay on the bus. The fundamental unit of delay
that can be queued on the Cheetah SPI bus is 8 times the clock period. Therefore,
requested delay will be rounded up to the next even multiple of this time span. The
function will return the actual number of nanoseconds queued.

The requested number of nanoseconds must be greater than zero and less than or
equal to 2 seconds. If the requested number of nanoseconds is out of bounds, no
delay is queued and the function will return 0.

Get Shift Length (ch_spi_batch_length)

 int ch_spi_batch_length (Cheetah cheetah);

Returns the number of data bytes in the queue.

Arguments

cheetah handle of a Cheetah adapter

Cheetah SPI Host Adapter User Manual

32

40

Return Value

Returns the number of data bytes in the queue. This does not include the
commands (SS assertion, OE, etc). It only corresponds to the number of bytes that
will be shifted out on the SPI bus. The value returned is also the number of bytes to
expect from the slave device when the currently queued commands are executed.

Specific Error Codes

None.

Details

None.

Execute SPI Shift (ch_spi_batch_shift)

 int ch_spi_batch_shift (Cheetah cheetah,
 int num_bytes,
 u08 * data_in);

Perform the SPI shift operations in the queue.

Arguments

cheetah handle of a Cheetah adapter

num_bytes number of bytes to put into data_in

data_in buffer to place data received from slave device

Return Value

The number of bytes sent by the Cheetah device across the SPI bus.

Specific Error Codes

CH_SPI_BATCH_EMPTY_QUEUE The queue was empty.

Details

This function performs all of the accumulated commands in the queue and shifts
them in order onto the SPI bus. After the operation completes, the batch queue is
not cleared. Therefore, this function may be called repeatedly if the same sequence
of commands is to be shifted across the bus multiple times.

As data is shifted by the Cheetah device onto the MOSI line, the slave device will
shift the same amount of data back across the MISO line. This function will put the
first num_bytes number of bytes received from the slave device into the data_in

Cheetah SPI Host Adapter User Manual

41

array. To ensure that all of the data from the slave device is captured, call
ch_spi_batch_length to determine how much data to expect from the slave
device. Setting num_bytes to 0 is permissible for cases where the data from slave
device is not required and can simply be discarded.

If the number of bytes received from the slave device is less than num_bytes, only
the number of bytes received will be put into data_in. However, all of the outgoing
bytes in the queue will still be shifted. When setting num_bytes to a value less than
the total outgoing length, a special optimization will automatically take effect. This
optimization will help reduce the traffic on the USB bus in the inbound direction
(Cheetah to host). This optimization introduces an 8 clock cycle delay in the
operation of the Cheetah device at the point that the Cheetah device stops sending
the slave response back to the host.

Submit an Asynchronous SPI Shift (ch_spi_async_submit)

 int ch_spi_async_submit (Cheetah cheetah);

Submit the SPI shift operations in the queue for asynchronous execution.

Arguments

cheetah handle of a Cheetah adapter

Return Value

The number of bytes to be sent by the Cheetah device across the SPI bus.

Specific Error Codes

CH_SPI_BATCH_EMPTY_QUEUE The queue was empty.

CH_SPI_ASYNC_MAX_REACHED The maximum number of
outstanding asynchronous batches
has been reached.

CH_SPI_ASYNC_EXCESS_DELAY The queue has a queued delay after
the last shifted byte, which is not
permissible for asynchronous batch
shifting.

Details

This function will submit the current batch queue asynchronously to the Cheetah. A
temporary outgoing buffer will be created to store the batch queue. An internal
incoming buffer will be also created to asynchronously capture the slave response
data. The application programmer does not have to explicitly manage these two
buffers. The function will immediately return after queuing this batch onto the USB,
rather than waiting for the shift to complete on the SPI bus.

Cheetah SPI Host Adapter User Manual

42

At this point, the application can submit another batch to the queue. This can be
done immediately by submitting the same queue a second time without altering it
the application simply needs to call ch_spi_async_submit again. Or, the
application may clear the queue and assemble a different batch all together (see the
ch_spi_queuefamily of functions). Any subsequent calls to
ch_spi_async_submit will again create a temporary outgoing buffer and copy
the current batch into it. Likewise, a temporary incoming buffer will also be created.

Note that the submitted batch should be sufficiently long (in real time) so that it does
not complete before the application can submit more batches (and also collect the
first batch). This will allow the adjacent batches to shift with very little delay between
them. How long to be safe? First, there is always the possibility that the applications
process could be scheduled out by the operating system before it has an
opportunity to submit the subsequent batch. The operating system scheduler
timeslice may be as much as 10ms. Therefore, submitted batches should be long
enough to bridge one, if not two, time slices. Second, if the application is performing
its own functions between the submission of two batches, the length of the batches
should be long enough to accommodate the CPU time of those functions.

Keep in mind that there can significant memory overhead for each asynchronous
batch:

1. Up to 4 times the size of the outgoing number of bytes. In the worst case, if
there are no sequential repeats of data, the outgoing buffer is approximately
twice the size of the number of bytes shifted out on the SPI bus (this doesnt
count SS# assert/deassert commands or intermediate delays) and there is
potentially another factor of two due to kernel/user mode memory allocation. So
if the application shifts 10 KB out in one batch, the outgoing buffer overhead is
approximately 40 KB.

2. 2 times the size of the incoming buffer for each batch.

3. Size of the data_in buffer supplied to the ch_spi_async_collect function.

Hence, it is important to not queue many megabytes of batches with the
asynchronous interface. Additionally, only a fixed number of batches can be
submitted and be left pending prior to collection. This number is fixed to 16.

Cheetah SPI Host Adapter User Manual

43

Finally, the asynchronous interface is only useful if the outgoing data of any
asynchronous batch does not rely on the return MISO data of a previous
asynchronous batch.

Collect an Asynchronous SPI Shift (ch_spi_async_collect)

 int ch_spi_async_collect (Cheetah cheetah,
 int num_bytes,
 u08 * data_in);

Collect a previously submitted asynchronous SPI shift queue.

Arguments

cheetah handle of a Cheetah adapter

num_bytes number of bytes to put into data_in

data_in buffer to place data received from slave device

Return Value

The number of bytes sent by the Cheetah device across the SPI bus.

Specific Error Codes

CH_SPI_ASYNC_EMPTY There are no outstanding asynchronous
batches to be collected.

Details

This function can be called at anytime after submitting a batch for asynchronous
processing. It will block until the first pending batch completes. For example, if there
are 5 batches outstanding, this function will return after 1 batch has fully completed,
leaving the other 4 batches still outstanding.

The function will fill the user-supplied buffer with the incoming MISO data for the
completed batch. The incoming data will be copied from the internal incoming buffer
originally created by ch_spi_async_submit into the user supplied data_in
buffer. The internal buffers (both outgoing and incoming) for the completed batch
will be deleted before this function returns to the application.

If ch_close is called without collecting pending asynchronous batches, those
batches will be canceled, even if they are in progress. All temporary buffers will be
freed as well.

Cheetah SPI Host Adapter User Manual

44

A suggested mode of operation would be as follows:

1. Submit 2-4 asynchronous batches, each with about 40 ms worth of SPI shifting.
A single batch can contain many SPI commands / packets, of course.

2. Call ch_spi_async_collect to collect one batch. Signal another thread to
process this data.

3. Submit another asynchronous batch to replace the one that was just collected.

4. Repeat steps 2 & 3 while your other thread simply processes the data.

Note that this merely is a recommendation for use and developers can modify this
procedure as it suits their own application requirements.

The application must keep full accounting of how many batches have been
submitted and how many are collected during each step of the process. It is even
possible that the application will not need multiple threads if it can process the data
between steps 2 and 3 and guarantee the algorithm will not take too long to process
the incoming data.

5.6 Error Codes

Table 7 : Cheetah API Error Codes

Literal Name Value ch_status_string() return value

CH_OK 0 ok

CH_UNABLE_TO_LOAD_LIBRARY -1 unable to load library

CH_UNABLE_TO_LOAD_DRIVER -2 unable to load USB driver

CH_UNABLE_TO_LOAD_FUNCTION -3 unable to load binding function

CH_INCOMPATIBLE_LIBRARY -4 incompatible library version

CH_INCOMPATIBLE_DEVICE -5 incompatible device version

CH_INCOMPATIBLE_DRIVER -6 incompatible driver version

CH_COMMUNICATION_ERROR -7 communication error

CH_UNABLE_TO_OPEN -8 unable to open device

CH_UNABLE_TO_CLOSE -9 unable to close device

CH_INVALID_HANDLE -10 invalid device handle

CH_CONFIG_ERROR -11 configuration error

Cheetah SPI Host Adapter User Manual

45

CH_UNKNOWN_PROTOCOL -12 unknown protocol

CH_STILL_ACTIVE -13 still active

CH_FUNCTION_NOT_AVAILABLE -14 function not available

CH_OS_ERROR -15 os error

CH_SPI_WRITE_ERROR -100 spi write error

CH_SPI_BATCH_EMPTY_QUEUE -101 spi batch empty queue

CH_SPI_BATCH_SHORT_BUFFER -102 spi batch short buffer

CH_SPI_ASYNC_EMPTY -103 spi async empty

CH_SPI_ASYNC_PENDING -104 spi async pending

CH_SPI_ASYNC_MAX_REACHED -105 spi async max reached

CH_SPI_ASYNC_EXCESS_DELAY -106 spi async excess trailing delay

Cheetah SPI Host Adapter User Manual

46

6 Legal / Contact

6.1 Disclaimer

All of the software and documentation provided in this datasheet, is copyright Total
Phase, Inc. ("Total Phase"). License is granted to the user to freely use and distribute
the software and documentation in complete and unaltered form, provided that the
purpose is to use or evaluate Total Phase products. Distribution rights do not include
public posting or mirroring on Internet websites. Only a link to the Total Phase download
area can be provided on such public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general,
incidental, or consequential damages arising from the use of its site, the software or
documentation downloaded from its site, or any derivative works thereof, even if Total
Phase or distributors have been advised of the possibility of such damage. The software,
its documentation, and any derivative works is provided on an "as-is" basis, and thus
comes with absolutely no warranty, either express or implied. This disclaimer includes,
but is not limited to, implied warranties of merchantability, fitness for any particular
purpose, and non-infringement. Total Phase and distributors have no obligation to
provide maintenance, support, or updates.

Information in this document is subject to change without notice and should not be
construed as a commitment by Total Phase. While the information contained herein is
believed to be accurate, Total Phase assumes no responsibility for any errors and/or
omissions that may appear in this document.

6.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life
support devices or systems include, but are not limited to, surgical implants, medical
systems, and other safety-critical systems in which failure of a Total Phase product could
cause personal injury or loss of life. Should a Total Phase product be used in such an
unauthorized manner, Buyer agrees to indemnify and hold harmless Total Phase, its
officers, employees, affiliates, and distributors from any and all claims arising from such
use, even if such claim alleges that Total Phase was negligent in the design or
manufacture of its product.

6.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have
support-related questions, please go to the Total Phase website. For sales inquiries,
please contact sales@totalphase.com.

Cheetah SPI Host Adapter User Manual

47

http://www.totalphase.com/
mailto:sales@totalphase.com

©2006-2014 Total Phase, Inc.
All rights reserved.

Cheetah SPI Host Adapter User Manual

48

	Cheetah SPI Host Adapter
	1 General Overview
	1.1 SPI Background
	1.1.1 SPI History
	1.1.2 SPI Theory of Operation
	1.1.3 SPI Modes
	1.1.4 SPI Benefits and Drawbacks
	1.1.5 SPI References

	2 Hardware Specifications
	2.1 Connector Specification
	2.1.1 Orientation
	2.1.2 Order of Leads
	2.1.3 Ground
	2.1.4 SPI Pins
	2.1.5 Powering Downstream Devices

	2.2 Signal Specifications / Power Consumption
	2.2.1 Logic High Levels
	2.2.2 ESD protection
	2.2.3 Power Consumption

	2.3 USB 2.0
	2.4 Temperature Specifications
	2.5 SPI Signaling Characteristics
	2.5.1 SPI Waveforms
	2.5.2 Speeds
	2.5.3 Pin Driving

	3 Software
	3.1 Compatibility
	3.1.1 Overview
	3.1.2 Windows Compatibility
	3.1.3 Linux Compatibility
	3.1.4 Mac OS X Compatibility

	3.2 Windows USB Driver
	3.2.1 Driver Installation
	3.2.2 Driver Removal

	3.3 Linux USB Driver
	3.3.1 UDEV
	3.3.2 USB Hotplug
	3.3.3 World-Writable USB Filesystem

	3.4 Mac OS X USB Driver
	3.5 USB Port Assignment
	3.5.1 Detecting Ports

	3.6 Cheetah Dynamically Linked Library
	3.6.1 DLL Philosophy
	3.6.2 DLL Location
	3.6.3 DLL Versioning

	3.7 Rosetta Language Bindings: API Integration into Custom Applications
	3.7.1 Overview
	3.7.2 Versioning
	3.7.3 Customizations

	3.8 Application Notes
	3.8.1 Threading
	3.8.2 USB Scheduling Delays

	4 Firmware
	4.1 Philosophy
	4.2 Procedure

	5 API Documentation
	5.1 Introduction
	5.2 General Data Types
	5.3 Notes on Status Codes
	5.4 General
	5.4.1 Interface
	Find Devices (ch_find_devices)
	Find Devices (ch_find_devices_ext)
	Open a Cheetah device (ch_open)
	Open a Cheetah device (ch_open_ext)
	Close a Cheetah (ch_close)
	Get Port (ch_port)
	Get Unique ID (ch_unique_id)
	Status String (ch_status_string)
	Version (ch_version)
	Sleep (ch_sleep_ms)
	Target Power (ch_target_power)
	Host Interface Speed (ch_host_ifce_speed)

	5.5 SPI Interface
	5.5.1 SPI Overview
	5.5.2 SPI Functions
	Set Bitrate (ch_spi_bitrate)
	Configure SPI Bus Parameters (ch_spi_configure)
	Clear Batch Queue (ch_spi_queue_clear)
	Queue the Cheetah Output Enable (ch_spi_queue_oe)
	Queue Slave Select Signals (ch_spi_queue_ss)
	Queue a Byte (ch_spi_queue_byte)
	Queue a Byte Array (ch_spi_queue_array)
	Queue a Delay in Cycles (ch_spi_queue_delay_cycles)
	Queue a Delay in Nanoseconds (ch_spi_queue_delay_ns)
	Get Shift Length (ch_spi_batch_length)
	Execute SPI Shift (ch_spi_batch_shift)
	Submit an Asynchronous SPI Shift (ch_spi_async_submit)
	Collect an Asynchronous SPI Shift (ch_spi_async_collect)

	5.6 Error Codes

	6 Legal / Contact
	6.1 Disclaimer
	6.2 Life Support Equipment Policy
	6.3 Contact Information

