
Komodo™ Interfaces

The Komodo™ CAN (Controller Area Network) Interfaces are
powerful ISB-to-CAN adapters. The Komodo interfaces are all-in-
one tools capable of active CAN data transmission as well as
non-intrusive CAN bus monitoring. The portable and durable
Komodo interfaces easily integrate into end-user systems. They
provide flexible and scalable solutions for a variety of applications
including automotive, military, industrial, medical, and more. All
Komodo interfaces feature:

• Transfer rate up to 1 Mbps
• Independent galvanic isolation per CAN channel
• Error detection and time-stamping
• Precise timing resolution
• 8 configurable GPIOs
• USB 2.0 Full-Speed; bus-powered
• Free software and API
• Cross-platform support: Windows, Linux, and Mac OS X

compatible

Komodo CAN Duo Interface

Features

• Two independent customizable CAN channels in single
enclosure

• Controllable from two separate desktop applications
• Optimized for applications requiring dual CAN channels

Komodo CAN Solo Interface

Features

• Single customizable CAN channel
• Controllable from a single desktop application

Supported products:

Komodo CAN Interfaces
User Manual v1.22
February 28, 2014

1 General Overview

1.1 CAN Background

1.1.1 CAN History

CAN (Controller Area Network) is a serial bus protocol created in the mid-1980s by the
German company Bosch. It is optimized for sending small amounts of data between
multiple nodes. CAN is not a fast bus by today's standards, with a maximum data rate of
only 1 Megabit per second. However, operating at low data rates makes CAN quite
robust to noise and allows buses to span long distances.

CAN was originally designed for use in automobiles, but has also become popular in
low-bandwidth industrial applications such as controlling assembly line machines.

Although Boschs CAN specification does not define standard CAN voltages or connector
interfaces, standards organizations have defined multiple physical standards. The most
common CAN physical layer standard is ISO 11898-1, but others are also used.

1.1.2 CAN Theory of Operation

CAN allows multiple devices (referred to as "nodes") to connect to each other on a single
bus, as shown in Figure 1. Unlike other protocols, such as I C and SPI, CAN nodes do
not have strict master/slave roles. Instead, each CAN node may operate as a transmitter
or receiver at any time.

Figure 1 : Multiple nodes on a CAN bus.

Rather than sending data to specific targets, data messages are broadcast to all nodes
on the bus. Each receiver node decides for itself if the data is relevant by looking at the

Komodo CAN Interface User Manual

2

2

message frame's "identifier," which describes the content of the message. A message's
identifier also represents the priority and allows for automatic arbitration when multiple
nodes try to transmit at the same time.

A CAN bus can have two bit states: dominant or recessive. If one node sends a
dominant bit and another sends a recessive bit, the result will be dominant (as shown in
Table 1). Automatic arbitration is built in to the CAN protocol as all nodes must monitor
the bus state during transmission and cease transmission if a dominant bit is seen when
sending a recessive bit.

Table 1 : CAN Bus state when two nodes are transmitting

Dominant Recessive

Dominant Dominant Dominant

Recessive Dominant Recessive

The CAN protocol specifies four fundamental frame types which nodes use to interact:

1. Data Frame – carries 0-8 bytes of data, along with an identifier and CRC check

2. Remote Frame – requests a data frame transmission with a certain identifier node

3. Error Frame – transmitted when an error is detected

4. Overload Frame – provides extra delay between data and remote frames

For more details on message frame formatting, please consult Boschs CAN
specification 2.0 and the other resources listed in Section 1.1.5.

Further physical layer details are undefined by CAN specification "so as to allow
transmission medium and signal level implementations to be optimized for their
application." Common physical layer implementations, such as the ISO 11898, use a
balanced differential CAN bus. For more information about the Komodo interfaces
compatibilities, please refer to Section 2.

1.1.3 CAN Features and Benefits

CAN has many important features and benefits, including:

1. Multi-master – All nodes can transmit and receive messages.

2. Automatic prioritization of messages – Based on message identifier.

3. Automatic arbitration – Based on message identifier.

4. High reliability – Achieved through built-in error checking.

5. Robust – High performance, even in difficult electrical environments.

Komodo CAN Interface User Manual

3

6. Configuration flexibility – Nodes can be added to and removed from the bus
without modifying other nodes.

7. Many nodes can be connected on the same bus – CAN 2.0B defines identifiers as
29 bits, providing over 500,000 unique codes.

8. Buses can be very long – On the order of miles and kilometers.

9. Low cost

1.1.4 CAN Drawbacks

Here are a few drawbacks when using CAN:

1. Low-bandwidth – CAN supports a maximum data rate of 1 Mbps. This is not good
for high-bandwidth applications.

2. Small data transfers – data frames can only carry 8 bytes, so CAN is not good for
large data transfers.

3. Protocol overhead – The CAN protocol has a moderate amount of overhead (strict
message formatting, CRC checking, bit-stuffing, etc.) and is more complicated
than other protocols such as I C and SPI.

CAN is well-suited for connecting many devices that have small amounts of data to
share with each other at low data rates. Applications other than this, such as reading
from a large memory device, would not use CAN.

1.1.5 CAN References

• CAN Specification 2.0 – osch

• Controller Area Network Wikipedia article – Wikipedia

• Good introduction to CAN – Staffan Nilsson

Komodo CAN Interface User Manual

2

4

http://www.semiconductors.bosch.de/media/pdf/canliteratur/can2spec.pdf
http://en.wikipedia.org/wiki/Controller_area_network
http://hem.bredband.net/stafni/developer/CAN.htm

2 Hardware Specifications

2.1 Connector Specification

The Komodo CAN Interfaces feature a connector for each CAN channel: a common
DB-9 connector and a block screw terminal which wires can easily connect to.

2.1.1 D-Sub Connector

Figure 2 : DB-9 connector pin numbers

The DB-9 connector of Figure 2 follows the SAE J1939 CAN-CIA standard and has the
following pinout:

1. No Connect

2. CAN-

3. GND

4. No Connect

5. SHLD

6. GND

7. CAN+

8. No Connect

9. V+

Please see Section 2.3 for descriptions of the CAN signals.

Komodo CAN Interface User Manual

5

2.1.2 Terminal Block Connector

Each CAN channel features a green terminal block that consists of two parts: a right-
angle closed-end header and a right-angle plug. The plug includes screw terminals so it
can be used easily with wires.

Figure 3 : Terminal block pin numbers

The terminal block pinout is as follows:

1. GND

2. CAN-

3. SHLD

4. CAN+

5. V+

The terminal block pins are labeled on the top of the Komodo. Please see Section 2.3 for
descriptions of the CAN signals.

2.1.3 GPIO Connector

The Komodo interface features a DIN-9 connector for GPIO use. Please see the API
section of this document for more information on how to configure and use these pins.

Komodo CAN Interface User Manual

6

Figure 4 : DIN-9 connector pin numbers

Even though the GPIO DIN-9 cable included with the Komodo interface is labled with
4 inputs and 4 outputs, each GPIO pin can be configured as an input or an ouput. Table
2 shows the pinout for the DIN-9 connector on the Komodo interface along with
corresponding color and label on the cable.

Table 2 : GPIO Cable Pin Assignments

Number Color Label

Pin 1 Brown IN 1

Pin 2 Red IN 2

Pin 3 Orange IN 3

Pin 4 Yellow IN 4

Pin 5 Green OUT 1

Pin 6 Blue OUT 2

Pin 7 Purple OUT 3

Pin 8 Grey OUT 4

Pin 9 Black GND

Komodo CAN Interface User Manual

7

2.1.4 USB Connector

One side of the Komodo CAN Interfaces features a single USB-B receptacle. This port
connects to the analysis computer that runs the software or a custom application. This
port must be plugged in to provide power to the Komodo CAN Interface and to power the
CAN bus over V+ (if enabled).

2.2 GPIO

Digital inputs allow users to synchronize external logic with a CAN channel. Whenever
the state of an enabled digital input changes, an event will be sent to the analysis PC.

Digital outputs allow users to output events to external devices. These pins can be set to
activate on various conditions that are described more thoroughly in Section 5. A
common use for this feature is to trigger an oscilloscope or logic analyzer to capture
data.

Note that the GPIO's ground is the same as the USB's ground, and is isolated from each
of the CAN grounds.

2.2.1 GPIO Configuration

GPIO pins can be individually configured as either inputs or outputs. Input pins can be
configured to have a pull-up, pull-down, or no resistor enabled. The internal pull-up
resistors have a nominal value of 1.5 k.

Output pins may be configured as active high, active low, open-drain, or open-drain with
internal pull-up.

Please see Section 5 for more information on the API.

2.2.2 GPIO Signaling

The GPIO pins have a logical high output of 3.3 V. When configured as inputs, the
GPIOs can withstand a maximum input of 5.5 V. Exceeding this will damage the device.
Additional GPIO pin specifications are listed in Table 3.

Table 3 : GPIO Pin Voltages

Komodo CAN Interface User Manual

8

Input Output

V_L_MAX 1.0 V 0.4 V

V_H_MIN 2.3 V 2.9 V

2.3 CAN Signal Descriptions

This section describes the function of the Komodo interface's signals. For connector
pinout information, please see Section 2.1.1.

2.3.1 GND

Ground – The ground of the CAN channels are galvanically isolated from each other and
the Komodo interface's circuitry. Each channel's CAN- and CAN+ signals are referenced
to their respective ground pin. If a channel's ground is not connected, the signaling is
entirely unpredictable and communication will likely be corrupted. Two pins on the DB-9
are connected to ground to provide a solid ground path, though it is only necessary to
connect to one of these.

2.3.2 CAN-

Dominant Low – When a dominant bit is transmitted, the voltage of this pin is lower than
CAN+. When configured as an input, voltage may range from -12 V to 12 V. See
Section 2.5.1 for more details.

2.3.3 CAN+

Dominant High – When a dominant bit is transmitted, the voltage of this pin is higher
than CAN-. When configured as an input, Voltage may range from -12 V to 12 V. See
Section 2.5.1 for more details.

2.3.4 V+

Power – The Komodo interfaces can optionally source power to the CAN bus. If enabled,
the Komodo CAN Interfaces will provide approximately 4.8 V out on this pin and can
source up to 73mA (per CAN channel). The Komodo will illuminate the CAN power LED
if power is detected on this pin.

The input voltage on V+ should not exceed 30 V.

2.3.5 SHLD

CAN Shield – This pin may optionally be connected to the CAN bus shield.

Komodo CAN Interface User Manual

9

2.3.6 No Connect

No Connect – Reserved for future use. Internally, these pins are floating.

2.3.7 Powering Downstream Devices

It is possible to power one or more downstream CAN nodes using the V+ pin. The
Komodo CAN Interfaces can source a maximum of 73 mA per CAN channel with V+.

This current comes from the analysis PC's {{vbus}. See Section 2.7 for more details.

2.4 LED Indicators

The Komodo CAN Duo Interface has five LEDs in total and the Komodo CAN Solo
Interface has three. The green LED labeled "USB" serves as a global power indicator. It
illuminates when the Komodo interface is correctly connected to an analysis computer
and is receiving power over USB.

Each CAN interface features two LEDs: an activity LED and a bi-color power LED. The
bi-color power LEDs illuminate white when the Komodo interface is sourcing V+ to the
CAN bus, and illuminate blue when the CAN bus is powered externally. The power LEDs
will be off if power is neither observed nor sourced.

The CAN activity LEDs are orange, and their blink rate is proportional to the amount of
CAN data transmitted on the bus. If no data is being sent on an active CAN channel, the
activity LED will simply remain on without blinking.

2.5 Signal Levels/Voltage Ratings

2.5.1 Logic Levels

The Komodo interface signal specifications for transmitted dominant and recessive
states are listed in Tables 4 and 5, respectively.

Monitored CAN signals may range from -12V to 12V.

These signal levels apply to both transmitter and monitor modes.

Table 4 : Dominant State Output Voltage Levels

Signal Minimum V Nominal V Maximum V

CAN+ 2.9 3.5 4.5

CAN- 0.8 1.2 1.5

Differential 1.4 3.0
Table 5 : Recessive State Output Voltage Levels

Komodo CAN Interface User Manual

10

Signal Minimum V Nominal V Maximum V

Both CAN lines 2 2.3 3.0

Differential -0.5 0.05

2.5.2 ESD protection

The Komodo interface has built-in electrostatic discharge protection to prevent damage
to the unit from high voltage static electricity.

2.5.3 Input Current

The Komodo interface may draw up to 4 mA on the CAN+ and CAN- lines when
operating as a receiver.

2.5.4 Drive Current

The Komodo interface can drive all output signals with a maximum of 73 mA current
source or sink. Drawing more than this may damage the hardware.

2.5.5 Capacitance

The Komodo interface may add up to 23 pF capacitance on the CAN+ and CAN- lines.

2.6 CAN Signaling Characteristics

2.6.1 Speed

The Komodo interface may operate at a maximum bitrate of 1 Mbps. Not all bitrates are
supported. When an attempt is made to set the bitrate, the Komodo interface will be set
to the closest supported value less than or equal to the requested value.

2.7 Komodo Device Power Consumption

The Komodo interface consumes less than 150 mA from the host PC and reports itself
as a high-powered device. The Komodo interface should be plugged directly into the
host PC's USB host port or a self-powered hub. The Komodo interface should not be
connected to a bus-powered hub because these are only specified to supply 100 mA per
port.

Using the Komodo interface to supply power to CAN nodes will draw extra current from
V .

Komodo CAN Interface User Manual

BUS

11

2.8 USB 2.0

The Komodo interface is a full-speed USB 2.0 device.

2.9 Temperature Specifications

The Komodo CAN Interfaces are industrial grade products, rated for operating
temperatures from -40 to 85°C. Any use of the Komodo interfaces outside the industrial
grade temperature specification will void the hardware warranty.

Komodo CAN Interface User Manual

12

3 Software

3.1 Compatibility

3.1.1 Overview

The Komodo software is offered as a 32-bit or 64-bit Dynamic Linked Library (or shared
object). The specific compatibility for each operating system is discussed below. Be sure
the device driver has been installed before plugging in the Komodo interface.

3.1.2 Windows Compatibility

The Komodo software is compatible with Windows XP (SP2 or later, 32-bit and 64-bit),
Windows Vista (32-bit and 64-bit), and Windows 7 (32-bit and 64-bit). Windows 2000
and legacy 16-bit Windows 95/98/ME operating systems are not supported.

3.1.3 Linux Compatibility

The Komodo software is compatible with all standard 32-bit and 64-bit distributions of
Linux with kernel 2.6 and integrated USB support. When using the 32-bit library on a 64-
bit distribution, the appropriate 32-bit system libraries are also required.

3.1.4 Mac OS X Compatibility

The Komodo software is compatible with Intel versions of Mac OS X 10.5 Leopard,
10.6 Snow Leopard, 10.7 Lion, 10.8 Mountain Lion, and 10.9 Mavericks. Installation of
the latest available update is recommended.

3.2 Windows USB Driver

3.2.1 Driver Installation

To install the appropriate USB communication driver under Windows, use the Total
Phase USB Driver Installer before plugging in any device. The driver installer can be
found either on the CD-ROM (use the HTML based guide that is opened when the CD is
first loaded to locate the Windows installer), or in the Downloads section of the Komodo
interface product page on the Total Phase website.

After the driver has been installed, plugging in a Komodo interface for the first time will
cause the interface to be installed and associated with the correct driver. The following

Komodo CAN Interface User Manual

13

steps describe the feedback the user should receive from Windows after a Komodo
interface is plugged into a system for the first time:

Windows XP:

1. The Found New Hardware notification bubble will pop up from the system tray
and state that the "Total Phase Komodo CAN Duo Interface" or "Total Phase
Komodo CAN Solo Interface" has been detected.

2. When the installation is complete, the Found New Hardware notification bubble
will again pop up and state that "your new hardware is installed and ready to use."

To confirm that the device was correctly installed, check that the device appears in the
"Device Manager". To navigate to the "Device Manager" in Windows XP, select "Control
Panel | System Properties | Hardware | Device Manager". The Komodo interface should
appear under the "Universal Serial Bus Controllers" section.

Windows Vista/7:

1. A notification bubble will pop up from the system tray and state that Windows is
"installing device driver software."

2. When the installation is complete, the notification bubble will again pop up and
state that the "device driver software installed successfully."

To confirm that the device was correctly installed, check that the device appears in the
"Device Manager." To navigate to the "Device Manager" screen in Windows Vista/7,
select "Control Panel | Hardware and Sound | Device Manager". The Komodo interface
should appear under the "Universal Serial Bus Controllers" section.

3.2.2 Driver Removal

The USB communication driver can be removed from the operating system by using the
Windows program removal utility. Instructions for using this utility can be found below.
Alternatively, the Uninstall option found in the driver installer can also be used to remove
the driver from the system. It is critical that all Total Phase devices have been
disconnected from your system before removing the USB drivers.

Windows XP:

1. Select "Control Panel | Add or Remove Programs"

2. Select "Total Phase USB Driver" and select "Change/Remove"

Komodo CAN Interface User Manual

14

3. Follow the instructions in the uninstaller

Windows Vista/7:

1. Select "Control Panel | Uninstall a program"

2. Right-click on "Total Phase USB Driver" and select "Uninstall/Change"

3. Follow the instructions in the uninstaller

3.3 Linux USB Driver

As of version 1.22, the Komodo communications layer under Linux no longer requires a
specific kernel mode or user mode driver to operate. This differs from previous versions
that required the user to ensure independently that the libusb library was installed on the
system. See the README.txt in the API package for more details.

Most modern Linux distributions use the udev subsystem to help manipulate the
permissions of various system devices. This is the preferred way to support access to
the Komodo interface such that the device is accessible by all of the users on the system
upon device plug-in.

For legacy systems, there are two different ways to access the Komodo interface:
through USB hotplug or by mounting the entire USB filesystem as world writable. Both
require that /proc/bus/usb is mounted on the system, which is the case on most
standard distributions.

3.3.1 UDEV

Support for udev requires a single configuration file that is available on the software CD,
and also listed on the Total Phase website for download. This file is 99-
totalphase.rules. Please follow the following steps to enable the appropriate
permissions for the Komodo interface.

1. As superuser, unpack 99-totalphase.rules to /etc/udev/rules.d

2. chmod 644 /etc/udev/rules.d/99-totalphase.rules

Komodo CAN Interface User Manual

15

3. Unplug and replug your Komodo interface(s)

3.3.2 USB Hotplug

USB hotplug requires two configuration files which are available on the software CD, and
also listed on the Total Phase website for download. These files are: komodo and
komodo.usermap. Please follow the following steps to enable hotplugging.

1. As superuser, unpack komodo and komodo.usermap to /etc/hotplug/usb

2. chmod 755 /etc/hotplug/usb/komodo

3. chmod 644 /etc/hotplug/usb/komodo.usermap

4. Unplug and replug your Komodo interface(s)

5. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

3.3.3 World-Writable USB Filesystem

Finally, here is a last-ditch method for configuring your Linux system in the event that
your distribution does not have udev or hotplug capabilities. The following procedure is
not necessary if you were able to exercise the steps in the previous subsections.

Often, the /proc/bus/usb directory is mounted with read-write permissions for root
and read-only permissions for all other users. If an non-privileged user wishes to use the
Komodo interface and software, one must ensure that /proc/bus/usb is mounted with
read-write permissions for all users. The following steps can help setup the correct
permissions. Please note that these steps will make the entire USB filesystem world
writable.

1. Check the current permissions by executing the following command:
ls -al /proc/bus/usb/001

2. If the contents of that directory are only writable by root, proceed with the
remaining steps outlined below.

3. Add the following line to the /etc/fstab file:

 none /proc/bus/usb usbfs defaults,devmode=0666 0 0

4. Unmount the /proc/bus/usb directory using "umount"

5. Remount the /proc/bus/usb directory using "mount"

6. Repeat step 1. Now the contents of that directory should be writable by all users.

Komodo CAN Interface User Manual

16

7. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

3.4 Mac OS X USB Driver

The Komodo communications layer under Mac OS X does not require a specific kernel
driver to operate. Both Mac OS X 10.5 Leopard and 10.6 Snow Leopard are supported.
It is typically necessary to ensure that the user running the software is currently logged
into the desktop. No further user configuration should be necessary.

3.5 USB Port Assignment

The Komodo CAN Duo Interface consists of two independent CAN channels and
presents two ports to the computer when connected. The Komodo CAN Solo Interface
consists of one CAN channel and presents one port to the computer when connected.
For example, one connected Komodo CAN Duo Interface would be assigned ports 0 and
1, and a second Komodo CAN Solo Interface would be assigned port 2.

Note that with the Windows operating system, each Komodo interface will appear as two
USB devices in the device manager.

If a Komodo interface is subsequently removed from the system, the remaining
interfaces shift their port numbers accordingly. With n Komodo interfaces attached, the
allocated ports will be numbered from 0 to 2n-1.

3.5.1 Detecting Ports

To determine the ports to which the Komodo interfaces have been assigned, use the
km_find_devices function as described in the API documentation.

3.6 Komodo Dynamically Linked Library

3.6.1 DLL Philosophy

The Komodo DLL provides a robust approach to allow present-day Komodo-enabled
applications to interoperate with future versions of the device interface software without
recompilation. For example, take the case of a graphical application that is written to
communicate CAN through a Komodo interface. At the time the program is built, the
Komodo software is released as version 1.2. The Komodo interface software may be
improved many months later resulting in increased performance and/or reliability; it is
now released as version 1.3. The original application need not be altered or recompiled.
The user can simply replace the old Komodo DLL with the newer one. How does this
work? The application contains only a stub which in turn dynamically loads the DLL on
the first invocation of any Komodo API function. If the DLL is replaced, the application
simply loads the new one, thereby utilizing all of the improvements present in the
replaced DLL.

Komodo CAN Interface User Manual

17

On Linux and Mac OS X, the DLL is technically known as a shared object (SO).

3.6.2 DLL Location

Total Phase provides language bindings that can be integrated into any custom
application. The default behavior of locating the Komodo DLL is dependent on the
operating system platform and specific programming language environment. For
example, for a C or C++ application, the following rules apply:

On a Windows system:

1. The directory from which the application binary was loaded.

2. The application's current directory.

3. 32-bit system directory (for a 32-bit application). Examples:

◦ C:\Windows\System32 [Windows XP/Vista/7 32-bit]

◦ C:\Windows\System64 [Windows XP 64-bit]

◦ C:\Windows\SysWow64 [Windows Vista/7 64-bit]

4. 64-bit system directory (for a 64-bit application). Examples:

◦ C:\Windows\System32 [Windows XP/Vista/7 64-bit]

5. The Windows directory. (Ex: C:\Windows)

6. The directories listed in the PATH environment variable.

On a Linux system this is as follows:

1. First, search for the shared object in the application binary path. If the /proc
filesystem is not present, this step is skipped.

2. Next, search in the applications current working directory.

3. Search the paths explicitly specified in LD_LIBRARY_PATH.

4. Finally, check any system library paths as specified in /etc/ld.so.conf and
cached in /etc/ld.so.cache.

On a Mac OS X system this is as follows:

1. First, search for the shared object in the application binary path.

2. Next, search in the applications current working directory.

Komodo CAN Interface User Manual

18

3. Search the paths explicitly specified in DYLD_LIBRARY_PATH.

4. Finally, check the /usr/lib and /usr/local/lib system library paths.

If the DLL is still not found, an error will be returned by the binding function. The error
code is KM_UNABLE_TO_LOAD_LIBRARY.

3.6.3 DLL Versioning

The Komodo DLL checks to ensure that the firmware of a given Komodo device is
compatible. Each DLL revision is tagged as being compatible with firmware revisions
greater than or equal to a certain version number. Likewise, each firmware version is
tagged as being compatible with DLL revisions greater than or equal to a specific version
number.

Here is an example:

 DLL v1.20: compatible with Firmware >= v1.15
 Firmware v1.30: compatible with DLL >= v1.20

Hence, the DLL is not compatible with any firmware less than version 1.15 and the
firmware is not compatible with any DLL less than version 1.20. In this example, the
version number constraints are satisfied and the DLL can safely connect to the target
firmware without error. If there is a version mismatch, the API calls to open the device
will fail. See the API documentation for further details.

3.7 Rosetta Language Bindings: API Integration into
Custom Applications

3.7.1 Overview

The Komodo Rosetta language bindings make integration of the Komodo API into
custom applications simple. Accessing Komodo functionality simply requires function
calls to the Komodo API. This API is easy to understand, much like the ANSI C library
functions, (e.g. there is no unnecessary entanglement with the Windows messaging
subsystem like development kits for some other embedded tools).

First, choose the Rosetta bindings appropriate for the programming language. Different
Rosetta bindings are included with the software distribution on the distribution CD. They
can also be found in the software download package available on the Total Phase
website. Currently the following languages are supported: C/C++, Python, Visual
Basic 6, Visual Basic .NET, and C#. Next, follow the instructions for each language
binding on how to integrate the bindings with your application build setup. As an
example, the integration for the C language bindings is described below. For more
information on how to integrate the bindings for other languages, please see the

Komodo CAN Interface User Manual

19

example code included on the distribution CD and also available for download on the
Total Phase website.

1. Include the komodo.h file included with the API software package in any C or C+
+ source module. The module may now use any Komodo API call listed in
komodo.h.

2. Compile and link komodo.c with your application. Ensure that the include path for
compilation also lists the directory in which komodo.h is located if the two files
are not placed in the same directory.

3. Place the Komodo DLL, included with the API software package, in the same
directory as the application executable or in another directory such that it will be
found by the previously described search rules.

3.7.2 Versioning

Since a new Komodo DLL can be made available to an already compiled application, it is
essential to ensure the compatibility of the Rosetta binding used by the application (e.g.
komodo.c) against the DLL loaded by the system. A system similar to the one
employed for the DLL-Firmware cross-validation is used for the binding and DLL
compatibility check. Here is an example:

 DLL v1.20: compatible with Binding >= v1.10
 Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is
performed within the binding. If there is a version mismatch, the API function will return
an error code, KM_INCOMPATIBLE_LIBRARY.

3.7.3 Customizations

While the provided language bindings stubs are fully functional, it is possible to modify
the code found within this file according to specific requirements imposed by the
application designer.

For example, in the C bindings one can modify the DLL search and loading behavior to
conform to a specific paradigm. See the comments in komodo.c for more details.

3.8 Application Notes

3.8.1 Asynchronous Messages

There is buffering within the Komodo DLL, on a per-device basis, to help capture
asynchronous messages. Take the case of the Komodo interface receiving CAN

Komodo CAN Interface User Manual

20

messages asynchronously. If the application calls the function to change the state of a
GPIO while some unprocessed asynchronous messages are pending, the Komodo
interface will modify the GPIO pin but also save any pending CAN messages internally.
The messages will be held until the appropriate API function is called.

3.8.2 Receive Saturation

The Komodo interface can be configured as an active CAN node, or a passive monitor.
A CAN channel can receive messages asynchronously with respect to the host PC
software. Between calls to the Komodo API, these messages must be buffered
somewhere in memory. This is accomplished on the PC host, courtesy of the operating
system. Naturally, the buffer is limited in size and once this buffer is full, bytes will be
dropped.

An overflow can occur when the Komodo device receives asynchronous messages
faster than the rate that they are processed – the receive link is "saturated". This
condition can affect other synchronous communication with the Komodo interface.

The receive saturation problem can be improved in two ways. The obvious solution is to
reduce the amount of traffic that is sent by all CAN nodes between calls to the Komodo
API. This will require the ability to reconfigure the offending CAN device(s). The other
option is to poll the CAN channel to collect pending messages more frequently.

3.8.3 Threading

Each port on the Komodo interface is independent, and both can be used simultaneously
in different threads. If the application design requires multi-threaded use of the Komodo
functionality for a single port, each Komodo API call can be wrapped with a thread-safe
locking mechanism before and after invocation. For more details, please see the API
section.

3.8.4 USB Scheduling Delays

Each API call used to send data to and from the Komodo interface can incur up to 1 ms
in delay on the PC host. This is caused by the inherent design of the USB architecture.
The operating system will queue any outgoing USB transfer request on the host until the
next USB frame period. The frame period is 1 ms. Thus, if the application attempts to
execute several transactions in rapid sequence there can be 1-2 ms delay between each
transaction plus any additional process scheduling delays introduced by the operating
system.

Komodo CAN Interface User Manual

21

4 Firmware

4.1 Field Upgrades

4.1.1 Upgrade Philosophy

The Komodo interface is designed so that its internal firmware can be upgraded by the
user, thereby allowing the inclusion of any performance enhancements or critical fixes
available after the purchase of the device. The upgrade procedure is performed via USB
and has several error checking facilities to ensure that the Komodo interface is not
rendered permanently unusable by a bad firmware update. In the worst case scenario, a
corruption can cause the Komodo interface to be locked until a subsequent clean update
is executed.

4.1.2 Upgrade Procedure

Here is the simple procedure by which the Komodo firmware is upgraded:

1. Download the latest firmware from the Total Phase website.

2. Unzip the downloaded file. It contains the kmflash utility. This utility contains the
necessary information to perform the entire firmware update.

3. Run the appropriate version of kmflash :

◦ kmflash-windows.exe on Windows

◦ kmflash-linux on Linux

◦ kmflash-darwin on Mac OS X

It will first display the firmware version contained in the utility along with the
required hardware version to run this firmware version.

4. It will list all of the detected devices along with their current firmware and
hardware versions.

5. Select a device to upgrade. If the selected devices hardware is not suitable to
accept the new firmware, an error will be printed and the utility will be re-invoked.

6. If the chosen device is acceptable, the kmflash utility will update the device with
the new firmware. The process should take a few seconds, with a progress bar
displayed during the procedure.

Komodo CAN Interface User Manual

22

7. The upgraded Komodo interface should now be usable by any Komodo-enabled
application.

8. In the event that there was a malfunction in the firmware update, the Komodo
interface may not be recognizable by an Komodo-enabled application. Try the
update again, since the Komodo interface has most likely become locked due to a
corruption in the upgrade process. If the update still does not take effect, it is best
to revert back to the previous firmware. This can be done by running a previous
version of kmflash that contains an earlier firmware version. Check the Total
Phase website or the distribution CD that was included with your Komodo
interface for previous versions of the firmware.

Komodo CAN Interface User Manual

23

5 API Documentation

5.1 Introduction

The API documentation that follows is oriented toward the Komodo Rosetta C bindings.
The set of API functions and their functionality is identical regardless of which Rosetta
language binding is utilized. The only differences are in the calling convention of the
functions. For further information on such differences, please refer to the documentation
that accompanies each language bindings in the Komodo software distribution.

5.2 General Data Types

The following definitions are provided for convenience. The Komodo API provides both
signed and unsigned data types.

 typedef unsigned char u08;
 typedef unsigned short u16;
 typedef unsigned int u32;
 typedef unsigned long long u64;
 typedef signed char s08;
 typedef signed short s16;
 typedef signed int s32;
 typedef signed long long s64;

5.3 Notes on Status Codes

Most of the Komodo API functions can return a status or error code back to the caller.
The complete list of status codes is provided at the end of this chapter. All of the error
codes are assigned values less than 0, separating these responses from any numerical
values returned by certain API functions.

Each API function can return one of two error codes with regard to the loading of the
underlying Komodo DLL, KM_UNABLE_TO_LOAD_LIBRARY and
KM_INCOMPATIBLE_LIBRARY. If these status codes are received, refer to the previous
sections in this datasheet that discuss the DLL and API integration of the Komodo
software. Furthermore, all API calls can potentially return the error
KM_UNABLE_TO_LOAD_FUNCTION. If this error is encountered, there is likely a serious
version incompatibility that was not caught by the automatic version checking system.
Where appropriate, compare the language binding versions (e.g.,
KM_HEADER_VERSION found in komodo.h and KM_CFILE_VERSION found in
komodo.c) to verify that there are no mismatches. Next, ensure that the Rosetta
language binding (e.g., komodo.c and komodo.h) are from the same release as the

Komodo CAN Interface User Manual

24

Komodo DLL. If all of these versions are synchronized and there are still problems,
please contact Total Phase support for assistance.

Any API function that accepts a Komodo handle can return the error
KM_INVALID_HANDLE if the handle does not correspond to a valid Komodo device that
has already been opened. If this error is received, check the application code to ensure
that the km_open command returned a valid handle and that this handle is not corrupted
before being passed to the offending API function.

Finally, any API call that communicates with a Komodo interface can return the error
KM_COMMUNICATION_ERROR. This means that while the Komodo handle is valid and
the communication channel is open, there was an error receiving the acknowledgment
response from the Komodo interface. The error signifies that it was not possible to
guarantee that the connected Komodo interface has processed the host PC request,
though it is likely that the requested action has been communicated to the Komodo
interface and the response was simply lost.

Komodo configuration functions require that a Komodo handle be in a disabled state. If a
Komodo handle has been enabled by km_enable, these functions will return
KM_NOT_DISABLED. Komodo CAN bus and GPIO data functions require that a Komodo
handle be in an enabled state. If a Komodo handle has not been enabled by km_enable
(or has been disabled by km_disable), these functions will return KM_NOT_ENABLED.

These common status responses are not reiterated for each function. Only the error
codes that are specific to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed
following the API documentation.

5.4 Notes on Features

Each Komodo CAN Duo device has two ports through which software applications can
configure the device and communicate via CAN or GPIO. With multi-process access
comes the possibility of two separate processes interfering with one another in a number
of ways.

As a certain measure of protection, most CAN and GPIO API functions require certain
resources to be possessed prior to successful execution. That is, a software process
attempting to manipulate the CAN or GPIO interfaces through a port must first acquire
certain feature resources from the Komodo CAN Duo device. These features are as
follows:

Table 6 : Komodo features bit mask

KM_FEATURE_GPIO_LISTEN Read GPIO pin values

KM_FEATURE_GPIO_CONTROL Set GPIO pin values

KM_FEATURE_GPIO_CONFIG Configure GPIO pin directions

Komodo CAN Interface User Manual

25

KM_FEATURE_CAN_A_LISTEN Read CAN Channel A packets

KM_FEATURE_CAN_A_CONTROL Send CAN Channel A packets

KM_FEATURE_CAN_A_CONFIG Configure CAN Channel A parameters

KM_FEATURE_CAN_B_LISTEN Read CAN Channel B packets

KM_FEATURE_CAN_B_CONTROL Send CAN Channel B packets

KM_FEATURE_CAN_B_CONFIG Configure CAN Channel B parameters

The features are acquired and released using functions km_acquire and km_release,
respectively.

Both ports on a single Komodo CAN Duo device can simultaneously possess the same
CONTROL and LISTEN features. The CONFIG features, however, can only be possessed
by one port at a time. Thus, it is possible for both ports to have simultaneous access to
the CAN and GPIO interfaces, but it is not possible for one port to change certain vital
configuration parameters the other port relies on.

The Komodo CAN Solo device has only one CAN channel but users are still required to
acquire the resources before using them.

5.5 General

5.5.1 Interface

Find Devices (km_find_devices)

 int km_find_devices (int num_ports,
 u16 *ports);

Get a list of ports through which Komodo devices can be accessed.

Arguments

num_ports maximum number of ports to return

ports array into which the port numbers are returned

Return Value

This function returns the number of ports found, regardless of the array size.

Specific Error Codes

None.

Komodo CAN Interface User Manual

26

Details

Each element of the array is written with the port number.

Each Komodo device has two separate virtual ports. Each port represents a single
element in the ports array. The ports from a single Komodo device always appear
sequentially in the ports array.

Ports that are in use are OR'ed with KM_PORT_NOT_FREE (0x8000).

Examples:

Three Komodo devices are attached.
Both ports from device 0 are in-use. Both ports from the device 1 are free. The first
port from device 2 is in-use and second port is free.
array => { 0x8000, 0x8001, 0x0002, 0x0003, 0x8004, 0x0005 }

If the input array is NULL, it is not filled with any values.

If there are more ports than the array size (as specified by num_ports), only the
first num_ports port numbers will be written into the array.

Find Devices (km_find_devices_ext)

 int km_find_devices_ext (int num_ports,
 u16 *ports,
 int num_ids,
 u32 *unique_ids);

Get a list of ports, and corresponding unique IDs, through which Komodo devices can be
accessed.

Arguments

num_ports maximum number of ports to return

ports array into which the port numbers are returned

num_ids maximum number of unique IDs to return

unique_ids array into which the unique IDs are returned

Return Value

This function returns the number of ports found, regardless of the array size.

Komodo CAN Interface User Manual

27

Specific Error Codes

None.

Details

This function is the same as km_find_devices() except that is also returns the
unique IDs of each Komodo port. Both ports on a physical Komodo device share the
same ID. The IDs are guaranteed to be non-zero if valid.

The IDs are the unsigned integer representation of the 10-digit serial numbers.

The number of ports and IDs returned in each of their respective arrays is
determined by the minimum of num_ports and num_ids. However, if either array
is NULL, the length passed in for the other array is used as-is, and the NULL array is
not populated. If both arrays are NULL, neither array is populated, but the number of
devices found is still returned.

Open a Komodo port (km_open)

 Komodo km_open (int port_number);

Open a Komodo port.

Arguments

port_number The port is the same as the one obtained from function
km_find_devices. It is a zero-based number.

Return Value

This function returns a Komodo handle, which is guaranteed to be greater than zero
if valid.

Specific Error Codes

KM_UNABLE_TO_OPEN The specified port is not associated with a
Komodo device or the port is already in
use.

KM_INCOMPATIBLE_DEVICE There is a version mismatch between the
DLL and the firmware. The DLL is not of a
sufficient version for interoperability with the
firmware version or vice versa. See
km_open_ext() for more information.

Details

Komodo CAN Interface User Manual

28

This function is recommended for use in simple applications where extended
information is not required. For more complex applications, the use of
km_open_ext() is recommended.

Open a Komodo port (km_open_ext)

 Komodo km_open_ext (int port_number, KomodoExt *km_ext);

Open a Komodo port, returning extended information in the supplied structure.

Arguments

port_number same as km_open

km_ext pointer to a pre-allocated structure for extended
version information available on open

Return Value

This function returns a Komodo handle, which is guaranteed to be greater than zero
if valid.

Specific Error Codes

KM_UNABLE_TO_OPEN The specified port is not associated with a
Komodo device or the port is already in
use.

KM_INCOMPATIBLE_DEVICE There is a version mismatch between the
DLL and the firmware. The DLL is not of a
sufficient version for interoperability with the
firmware version or vice versa. The version
information will be available in the memory
pointed to by km_ext.

Details

If 0 is passed as the pointer to the structure, this function will behave exactly like
km_open().

The KomodoExt structure is described below:

 struct KomodoExt {
 KomodoVersion version;
 /* Features of this device. */
 int features;

Komodo CAN Interface User Manual

29

 }

The features field denotes the capabilities of the Komodo port. See the API function
km_features for more information.

The KomodoVersion structure describes the various version dependencies of
Komodo components. It can be used to determine which component caused an
incompatibility error.

struct KomodoVersion {
 /* Software, firmware, and hardware versions. */
 u16 software;
 u16 firmware;
 u16 hardware;

 /* Firmware revisions that are compatible with this
 * software version. The top 16 bits gives the maximum
 * accepted fw revision. The lower 16 bits gives the
 * minimum accepted fw revision.
 */
 u32 fw_revs_for_sw

 /* Hardware revisions that are compatible with this
 * software version. The top 16 bits gives the maximum
 * accepted hw revision. The lower 16 bits gives the
 * minimum accepted hw revision.
 */
 u32 hw_revs_for_sw

 /* Software requires that the API interface must
 * be >= this version.
 */
 u16 api_req_by_sw
 };

All version numbers are of the format:

(major << 8) | minor
example: v1.20 would be encoded as 0x0114.

The structure is zeroed before the open is attempted. It is filled with whatever
information is available. For example, if the firmware version is not filled, then the
device could not be queried for its version number.

Komodo CAN Interface User Manual

30

This function is recommended for use in complex applications where extended
information is required. For simpler applications, the use of km_open() is
recommended.

Close a Komodo port (km_close)

 int km_close (Komodo komodo);

Close a Komodo port.

Arguments

komodo handle of a Komodo port to be closed

Return Value

The number of ports closed is returned on success. This will usually be 1.

Specific Error Codes

None.

Details

If the handle argument is zero, the function will attempt to close all possible
handles, thereby closing all open Komodo ports. The total number of Komodo ports
closed is returned by the function.

Get Supported Features (km_features)

 int km_features (Komodo komodo);

Return the set of features supported by this port.

Arguments

komodo handle of a Komodo port

Return Value

A mask of all features supported by the port is returned. Bitmask values are as
defined in Table 6.

Specific Error Codes

None.

Details

Komodo CAN Interface User Manual

31

The features mask returned by this function does not encode any information about
the features currently available for use, or currently acquired by the port. The
bitmask value only indicates the features that are supported by the port.

Get Unique ID (km_unique_id)

 u32 km_unique_id (Komodo komodo);

Return the unique ID of the given Komodo port.

Arguments

komodo handle of a Komodo port

Return Value

This function returns the unique ID for this Komodo interface. The IDs are
guaranteed to be non-zero if valid. The ID is the unsigned integer representation of
the 10-digit serial number.

Specific Error Codes

None.

Details

None.

Status String (km_status_string)

 const char *km_status_string (int status);

Return the status string for the given status code.

Arguments

status status code returned by a Komodo API function

Return Value

This function returns a human readable string that corresponds to status. If the code
is not valid, it returns a NULL string.

Specific Error Codes

None.

Details

Komodo CAN Interface User Manual

32

None.

Version (km_version)

 int km_version (Komodo komodo, KomodoVersion *version);

Return the version matrix for the port associated with the given handle.

Arguments

komodo handle of a Komodo port

version pointer to pre-allocated structure

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

If the handle is 0 or invalid, only the software version is set.

See the details of km_open_ext for the definition of KomodoVersion.

Sleep (km_sleep_ms)

 u32 km_sleep_ms (u32 milliseconds);

Sleep for given amount of time.

Arguments

milliseconds number of milliseconds to sleep

Return Value

This function returns the number of milliseconds slept.

Specific Error Codes

None.

Details

Komodo CAN Interface User Manual

33

This function provides a convenient cross-platform function to sleep the current
thread using standard operating system functions.

The accuracy of this function depends on the operating system scheduler. This
function will return the number of milliseconds that were actually slept.

Acquire Features (km_acquire)

 int km_acquire (Komodo komodo, u32 features);

Acquire features from the Komodo device.

Arguments

komodo handle of a disabled Komodo port

features bitmask of features to acquire as detailed in Table 6.

Return Value

A mask of all features acquired by the port is returned.

Specific Error Codes

None.

Details

The behavior of km_acquire is additive. Previously acquired features are never
released by a call to km_acquire. Thus, it is possible to acquire various features
through separate calls to km_acquire, though it is not necessary to do so.

Acquired features can be queried using a call to km_acquire with a features
value of 0.

In the event that a specified feature cannot be acquired, an error will not occur.
Instead, the returned feature mask will indicate which features are currently
acquired.

Komodo CAN Interface User Manual

34

Note: Both ports on a single Komodo can simultaneously possess the same
CONTROL and LISTEN features. The CONFIG features can only be possessed by
one port at a time.

Release Features (km_release)

 int km_release (Komodo komodo, u32 features);

Release features to the Komodo device.

Arguments

komodo handle of a disabled Komodo port

features bitmask of features to release as detailed in Table 6.

Return Value

A mask of all features acquired by the port is returned.

Specific Error Codes

None.

Details

The behavior of km_release is subtractive. Previously acquired features are never
released by a call to km_release unless they are specified in the features mask.
Thus, it is possible to release various features through separate calls to
km_release, though it is not necessary to do so.

Acquired features can be queried using a call to km_release with a features
value of 0.

In the event that a specified feature cannot be released, an error will not occur.
Instead, the returned feature mask will indicate which features are currently
acquired.

Query Samplerate (km_get_samplerate)

 int km_get_samplerate (Komodo komodo);

Query the Komodo device sampling rate.

Arguments

komodo handle of a disabled Komodo port

Komodo CAN Interface User Manual

35

Required Features

The current samplerate in Hz is returned.

Specific Error Codes

None.

Details

None.

Set Komodo Timeout (km_timeout)

 int km_timeout (Komodo komodo, u32 timeout_ms);

Set the read timeout to the specified number of milliseconds.

Arguments

komodo handle of a disabled Komodo port

timeout_ms timeout value in milliseconds, or a special enumerated
value, as shown in Table 7

Table 7 : timeout_ms enumerated types

KM_TIMEOUT_IMMEDIATE Return immediately

KM_TIMEOUT_INFINITE Block indefinitely until data is received

Required Features

LISTEN must have been acquired on at least one feature.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

This function sets the amount of time that km_can_read will wait before returning if
the bus is idle. If km_can_read is called and there has been no new data on the

Komodo CAN Interface User Manual

36

bus for the specified timeout interval, the function will return with the
KM_READ_TIMEOUT flag of the status value set.

If the timeout is set to KM_TIMEOUT_IMMEDIATE, calls to km_can_read will
always return immediately.

If the timeout is set to KM_TIMEOUT_INFINITE, calls to km_can_read will block
indefinitely until the Komodo port receives data from the CAN bus, or detects a
GPIO event.

Calls to km_can_read are OS dependent, and thus the supplied timeout value
cannot be guaranteed by the API.

Set Komodo Latency (km_latency)

 int km_latency (Komodo komodo, u32 latency_ms);

Set the maximum latency to the specified number of milliseconds.

Arguments

komodo handle of a disabled Komodo port

latency_ms latency value in milliseconds

Required Features

LISTEN must have been acquired on at least one feature.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

Set the capture latency to the specified number of milliseconds.

The capture latency effectively splits up the total amount of buffering into smaller
individual buffers. Only once one of these individual buffers is filled, does the read
function return. Therefore, in order to fulfill shorter latency requirements, these
individual buffers are set to a smaller size. If a larger latency is requested, then the
individual buffers will be set to a larger size.

Komodo CAN Interface User Manual

37

Setting a small latency can increase the responsiveness of the read function. It is
important to keep in mind that there is a fixed cost to processing each individual
buffer that is independent of buffer size. Therefore, the trade-off is that using a small
latency will increase the overhead per byte buffered. A large latency setting
decreases that overhead, but increases the amount of time that the library must wait
for each buffer to fill before the library can process their contents.

This setting is distinctly different from the timeout setting. The latency time should
be set to a value shorter than the timeout.

5.6 CAN Interface

5.6.1 CAN Notes

1. The Komodo CAN Duo supports two CAN channels. Some CAN API functions
require a CAN channel with an enumerated type of km_can_ch_t. This
enumerated type is described in Table 8.

Table 8 : CAN Channel Enumerated Type

KM_CAN_CH_A CAN Channel A

KM_CAN_CH_B CAN Channel B

For the Komodo CAN Solo, the channel should always be KM_CAN_CH_A for all
CAN API functions requiring it.

2. The Komodo has a limited buffer used to buffer CAN packets and CAN events. If
this buffer is filled, the Komodo will not report new packets or events, and it will
stop transmitted packes on the CAN bus. This situation can be detected by seeing
a KM_READ_END_OF_CAPTURE in the status field of the km_can_info_t struct
from the km_can_read function. Also, in this situation the CAN write functions
will return with an error code of KM_CAN_SEND_FAIL.

To decrease the possibility of this buffer filling, the following steps may be taken:

◦ Ensure the CAN bus is properly terminated, otherwise the Komodo is
saturated with CAN errors.

◦ Use only one port on the Komodo device.

◦ Use only one CAN channel on the Komodo device.

Komodo CAN Interface User Manual

38

◦ Use a lower CAN bitrate.

5.6.2 General CAN

Configure CAN (km_can_configure)

 int km_can_configure (Komodo komodo, u32 config);

Configure the CAN interface.

Arguments

komodo handle of a disabled Komodo port

config Either KM_CAN_CONFIG_NONE for the default configuration or
a bitmask of the flags shown in Table 9 for a custom
configuration.

Table 9 : config constants

KM_CAN_CONFIG_LISTEN_SELF CAN traffic generated by the Komodo
will be returned through
km_can_read.

Required Features

LISTEN must have been acquired on at least one channel.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

If KM_CAN_CONFIG_LISTEN_SELF is set, all CAN traffic generated by the Komodo
will be returned through km_can_read. This includes host-generated packets from
both Komodo ports.

Otherwise, Komodo-generated traffic will not be returned through km_can_read.
This is the default behavior.

Komodo CAN Interface User Manual

39

Set CAN Bus Timeout (km_can_bus_timeout)

 int km_can_bus_timeout (Komodo komodo,
 km_can_ch_t channel,
 u16 timeout_ms);

Set the timeout for CAN packets awaiting transmission.

Arguments

komodo handle of a disabled Komodo port

channel the CAN channel for which to set the timeout value

timeout_ms the timeout value in milliseconds

Required Features

CONTROL must have been acquired on the selected channel.

Return Value

The function returns the new timeout value in milliseconds.

Specific Error Codes

None.

Details

The timeout timer for a CAN submission begins when the packet is first given to the
CAN controller on the Komodo. If the timeout is reached before the packet is
transmitted successfully on the CAN bus, KM_CAN_SEND_TIMEOUT will be returned
by km_can_write or km_can_async_collect.

The actual timeout value will not always be set to timeout_ms. The timeout is set
to the closest permissible timeout value that is greater than or equal to
timeout_ms. This function returns the actual timeout value in milliseconds.

Set CAN Bitrate (km_can_bitrate)

 int km_can_bitrate (Komodo komodo,
 km_can_ch_t channel,
 u32 bitrate_hz);

Set the bitrate for CAN packet reception and transmission.

Arguments

Komodo CAN Interface User Manual

40

komodo handle of a disabled Komodo port

channel the CAN channel for which to set the bitrate

bitrate_hz bitrate value in hertz

Required Features

CONFIG must have been acquired on the selected channel.

Return Value

The function returns the new bitrate value in hertz.

Details

The actual bitrate value will not always be set to bitrate_hz. The bitrate is set to
the closest permissible bitrate value that is greater than or equal to bitrate_hz.
The maximum allowable bitrate is 1 MHz.

If bitrate_hz is set to 0, the Komodo device will simply return the current bitrate
set.

Auto-detect CAN Bitrate (km_can_auto_bitrate)

 int km_can_auto_bitrate (Komodo komodo,
 km_can_ch_t channel);

Automatically set the bitrate for CAN packet reception and transmission.

Arguments

komodo handle of a disabled Komodo port

channel the CAN channel for which to auto-detect the bitrate

Required Features

CONFIG must have been acquired on the selected channel.

Return Value

The function returns the new bitrate value in hertz.

Specific Error Codes

KM_CAN_AUTOBITRATE_FAIL Unable to detect a bitrate.

Details

Komodo CAN Interface User Manual

41

This function provides an easy mechanism for auto-detecting the bitrate. It is
equivalent to calling km_can_auto_bitrate_ext with the following bitrates:

• 1000000

• 500000

• 250000

• 125000

• 100000

• 50000

• 25000

• 20000

Auto-detect CAN Bitrate Extended (km_can_auto_bitrate_ext)

 int km_can_auto_bitrate_ext (Komodo komodo,
 km_can_ch_t channel,
 u32 num_bitrate_hz,
 u32 *bitrates_hz);

Automatically set the bitrate for CAN packet reception and transmission with extended
options.

Arguments

komodo handle of a disabled Komodo port

channel the CAN channel for which to auto-detect the bitrate

num_bitrates_hz number of items in the bitrate_hz array

bitrates_hz list of bitrates

Required Features

CONFIG must have been acquired on the selected channel.

Return Value

The function returns the new bitrate value in hertz.

Specific Error Codes

KM_CAN_AUTOBITRATE_FAIL Unable to detect a bitrate.

Komodo CAN Interface User Manual

42

Details

This function takes in a list of potential bitrates on the bus. It will attempt each bitrate
in order for up to 500 ms before attempting a new bitrate. If a successfully
completed packet is perceived by the channel, then that bitrate is deemed a
success, and the bitrate is returned.

If the function is unable to find a successful packet for any of the bitrates within the
alotted time, it will return KM_CAN_AUTOBITRATE_FAIL.

The actual bitrate value will not always be set to the values in bitrates_hz. The
bitrate is set to the closest permissible bitrate value that is greater than or equal to
the value in bitrates_hz. The maximum allowable bitrate is 1 MHz.

Set Target Power (km_can_target_power)

 int km_can_target_power (Komodo komodo,
 km_can_ch_t channel,
 km_power_t power);

Set the target power option on a CAN channel.

Arguments

komodo handle of a disabled Komodo port

channel the CAN channel for which to set target power

power the desired power setting, as described in Table 10

Table 10 : power enumerated types

KM_TARGET_POWER_OFF Disable target power.

KM_TARGET_POWER_ON Enable target power.

KM_TARGET_POWER_QUERY Query target power.

Required Features

CONFIG must have been acquired on the supplied channel.

Return Value

The current state of the target power pin on the supplied CAN channel will be
returned. The configuration will be described by the same values as in the table
above.

Komodo CAN Interface User Manual

43

Specific Error Codes

None.

Details

None.

Port Enable (km_enable)

 int km_enable (Komodo komodo);

Enable the port associated with the provided handle.

Arguments

komodo handle of a disabled Komodo port

Required Features

Either LISTEN or CONTROL must have been acquired on at least one feature.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

This function enables LISTEN and CONTROL features acquired by the provided port.
The port must have acquired at least one of these features, and must not be active
prior to calling km_enable.

If another port on the Komodo device is active with only the CAN LISTEN feature,
and this port has the CAN CONTROL feature, then the other port may experience
brief packet loss when this port is enabled, and the CAN channel is changed to an
active participant on the bus.

Port Disable (km_disable)

 int km_disable (Komodo komodo);

Disable the port associated with the provided handle.

Komodo CAN Interface User Manual

44

Arguments

komodo handle of an enabled Komodo port

Required Features

None.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

This function disables active LISTEN and CONTROL functionality on the provided
port. The port must be active prior to calling km_disable.

If another port on the Komodo device is active with only the CAN LISTEN feature,
and this port has the CAN CONTROL feature, then the other port may experience
brief packet loss when this port is disabled, and the CAN channel is reverted to
listen-only mode.

Query CAN Bus State (km_can_query_bus_state)

 int km_can_bus_state (Komodo komodo,
 km_can_ch_t channel,
 u08 *bus_state,
 u08 *rx_error,
 u08 *tx_error);

Query the current state of the provided CAN channel.

Arguments

komodo handle of an enabled Komodo port

channel the CAN channel for which to query error counters

bus_state filled with the current CAN state enumerated value as
shown in Table 11

rx_error filled with the total number of CAN RX errors

tx_error filled with the total number of CAN TX errors

Komodo CAN Interface User Manual

45

Table 11 : bus_state enumerated types

KM_CAN_BUS_STATE_LISTEN_ONLY Listen only mode

KM_CAN_BUS_STATE_CONTROL Control mode

KM_CAN_BUS_STATE_WARNING Warning state

KM_CAN_BUS_STATE_ACTIVE Active error state

KM_CAN_BUS_STATE_PASSIVE Passive error state

KM_CAN_BUS_STATE_OFF Bus-off condition

Required Features

Either CONFIG or LISTEN must have been acquired on the selected channel.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

Queries the provided CAN channels controller for its state and its error counts.

CAN Read (km_can_read)

 int km_can_read (Komodo komodo,
 km_can_info_t *info,
 km_can_packet_t *packet,
 int num_bytes,
 u08 *data);

Read a packet or info from a Komodo port.

Arguments

komodo handle of an enabled Komodo port

info filled with CAN bus information along with status and events

packet filled with CAN packet parameters

num_bytes length of the data array

data an allocated array of u08 which is filled with the received data

Komodo CAN Interface User Manual

46

Required Features

LISTEN must have been acquired for at least one feature.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

KM_READ_EMPTY No data was available for a non-blocking call.

Details

Timeouts

The timeout value for km_can_read is configurable using km_timeout. The
km_timeout function sets the amount of time that km_can_read will block before
returning if the bus is idle.

If km_can_read is called and there has been no new data on the bus for the
specified timeout interval, the function will return with the KM_READ_TIMEOUT flag
of the status value set. An exception to this exists if info is a NULL pointer. In this
case, the function returns KM_OK.

If the timeout value is set to KM_TIMEOUT_IMMEDIATE, this function is non-
blocking. If no data is immediately available, the function returns
KM_CAN_READ_EMPTY.

If the timeout value is set to KM_TIMEOUT_INFINITE, this function will block
indefinitely until the Komodo port receives data on the CAN bus or a GPIO event.

CAN Packet Struct

A CAN packet struct type, km_can_packet_t, is used to provide information about
the CAN packet received on the bus on calls to km_can_read. This same struct is
used for the CAN transmit functions.

 struct km_can_packet_t {
 u08 remote_req;
 u08 extend_addr;
 u08 dlc;
 u32 id;

Komodo CAN Interface User Manual

47

 };

Table 12 : km_can_packet_t field descriptions

remote_req A flag set if the packet is a remote frame.

extend_addr A flag set if the packet is using the 29 bit identifier.

dlc The data length code field.

id The identifier field.

CAN Info Struct

A CAN info struct type, km_can_info_t, is used to provide important meta
information about the CAN bus or other events, on calls to km_can_read.

 /* CAN bus information */
 struct km_can_info_t {
 u64 timestamp;
 u32 status;
 u32 events;
 km_can_ch_t channel;
 u32 bitrate_hz;
 u08 host_gen;
 u08 rx_error_count;
 u08 tx_error_count;
 u32 overflow_count;
 };

Table 13 : km_can_info_t field descriptions

timestamp The timestamp of when the packet or event began

status Status mask as described in Table 14

events Event mask as described in Table 15

channel The channel on which the packet or event occurred

bitrate_hz The bitrate of the CAN bus in hertz

host_gen Indicates a host generated packet or event

rx_error_count CAN RX error counter

tx_error_count CAN TX error counter

overflow_count Read queue overflow counter

Table 14 : CAN Read status code descriptions

Komodo CAN Interface User Manual

48

KM_READ_TIMEOUT The read timeout limit was
reached

KM_READ_ERR_OVERFLOW Packet loss due to
insufficient read rate

KM_READ_END_OF_CAPTURE Capture ended

Status Codes for CAN Errors

KM_READ_CAN_ERR CAN Error has occurred

KM_READ_CAN_ERR_FULL_MASK A bitmask for the entire
CAN error

Status Codes for CAN Error Position

KM_READ_CAN_ERR_POS_MASK A bitmask for the position
of the error

KM_READ_CAN_ERR_POS_SOF Error at the Start of Frame

KM_READ_CAN_ERR_POS_ID28_21 Error at ID28 - ID21 bits

KM_READ_CAN_ERR_POS_ID20_18 Error at ID20 - ID18 bits

KM_READ_CAN_ERR_POS_SRTR Error at the SRTR bit

KM_READ_CAN_ERR_POS_IDE Error at the IDE bit

KM_READ_CAN_ERR_POS_ID17_13 Error at ID17 - ID13 bits

KM_READ_CAN_ERR_POS_ID12_5 Error at the ID12 - ID5 bits

KM_READ_CAN_ERR_POS_ID4_0 Error at the ID4 - ID0 bits

KM_READ_CAN_ERR_POS_RTR Error at the RTR bit

KM_READ_CAN_ERR_POS_RSVD_1 Error at Reserved Bit 1

KM_READ_CAN_ERR_POS_RSVD_0 Error at Reserved Bit 0

KM_READ_CAN_ERR_POS_DLC Error at the Data Length
Code

KM_READ_CAN_ERR_POS_DF Error at the Data Field

KM_READ_CAN_ERR_POS_CRC_SEQ Error at the CRC
Seqeuence

KM_READ_CAN_ERR_POS_CRC_DEL Error at the CRC Delimiter

KM_READ_CAN_ERR_POS_ACK_SLOT Error at the Acknowledge
Slot

KM_READ_CAN_ERR_POS_ACK_DEL Error at the Acknowledge
Delimiter

KM_READ_CAN_ERR_POS_EOF Error at the End of Frame

KM_READ_CAN_ERR_POS_INTRMSN Error at the Intermission

Komodo CAN Interface User Manual

49

KM_READ_CAN_ERR_POS_AEF Error at the Active Error
Flag

KM_READ_CAN_ERR_POS_PEF Error at the Passive Error
Flag

KM_READ_CAN_ERR_POS_TDB Error at the Tolerate
Dominant Bits

KM_READ_CAN_ERR_POS_ERR_DEL Error at the Error Delimiter

KM_READ_CAN_ERR_POS_ERR_OVRFLG Error at the Overload Flag

Status Codes for CAN Error Direction

KM_READ_CAN_ERR_DIR_MASK A bit mask for the direction
of the error

KM_READ_CAN_ERR_DIR_TX Error during transmission.

KM_READ_CAN_ERR_DIR_RX Error during reception.

Status Codes for CAN Error Type

KM_READ_CAN_ERR_TYPE_MASK A bit mask for the type of
the error

KM_READ_CAN_ERR_TYPE_BIT Bit type error

KM_READ_CAN_ERR_TYPE_FORM Form type error

KM_READ_CAN_ERR_TYPE_STUFF Stuff type error

KM_READ_CAN_ERR_TYPE_OTHER Other type error

Status Codes for CAN Arbitration Loss

KM_READ_CAN_ARB_LOST CAN controller lost
arbitration

KM_READ_CAN_ARB_LOST_POS_MASK Mask to determine the
position of arbitration loss

Table 15 : CAN Read event code descriptions

KM_EVENT_DIGITAL_INPUT Digital input detected

KM_EVENT_DIGITAL_INPUT_MASK Digital input bit mask

KM_EVENT_DIGITAL_INPUT_N Digital input detected on pin N

KM_EVENT_CAN_BUS_STATE_LISTEN_ONLY Entered Listen Mode

KM_EVENT_CAN_BUS_STATE_CONTROL Entered Control Mode

KM_EVENT_CAN_BUS_STATE_WARNING Reached Warning State

KM_EVENT_CAN_BUS_STATE_ACTIVE Entered Active Error Mode

KM_EVENT_CAN_BUS_STATE_PASSIVE Entered Passive Error Mode

KM_EVENT_CAN_BUS_STATE_OFF Inactive state entered

Komodo CAN Interface User Manual

50

KM_EVENT_CAN_BUS_BITRATE Bitrate update event

Asynchronous CAN Submit (km_can_async_submit)

 int km_can_async_submit (Komodo komodo,
 km_can_ch_t channel,
 u08 flags,
 const km_can_packet_t *packet,
 int num_bytes,
 const u08 *data);

Asynchronously submit a CAN packet.

Arguments

komodo handle of an enabled Komodo port

channel the CAN channel on which to submit the packet

flags special operations as described in Table 16

packet pre-allocated structure containing CAN packet
parameters, see Table 12

num_bytes size of the data array

data pre-allocated array containing CAN packet data

Table 16 : flags enumerated types

KM_CAN_FLAGS_ONE_SHOT Only attempt to transmit the packet once. Do not retransmit.

Required Features

CONTROL must have been acquired on the selected channel.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

KM_CAN_ASYNC_MAX_REACHED There are too many
outstanding CAN packets

Details

Komodo CAN Interface User Manual

51

This function asynchronously submits a CAN packet to the Komodo port for
transmission on the CAN bus. As an asynchrnonous call, this function will not block.

If the KM_CAN_FLAGS_ONE_SHOT bit is set in flags, the packet will be sent as a
one-shot transmission. Only one attempt will be made to transmit the packet on the
CAN bus in this case.

The response to an asynchronous CAN submission should be collected with a call
to km_can_async_collect.

Asynchronous CAN Collect (km_can_async_collect)

 int km_can_async_collect (Komodo komodo,
 u32 timeout_ms,
 u32 *arbitration_count);

Collect the response to a previously submitted CAN packet.

Arguments

komodo handle of an enabled Komodo port

timeout_ms timeout value

arbitration_count filled with the number of packets lost
because of arbitration loss

Required Features

None.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

KM_CAN_ASYNC_EMPTY There are no submitted CAN packets

KM_CAN_ASYNC_TIMEOUT The function timed out waiting for a response

KM_CAN_SEND_TIMEOUT The packet timedout

KM_CAN_SEND_FAIL Transmission failed

Details

Komodo CAN Interface User Manual

52

This function blocks for up to timeout_ms until a response is available for
collection from the port. If a successful response is collected, KM_OK is returned. If
the submitted packet timed out, KM_CAN_SEND_TIMEOUT is returned.

If the internal buffer on the Komodo device is overflowed KM_CAN_SEND_FAIL is
returned. This error will be returned until the Komodo device is disabled.

The arbitration_count field is set based on the number of arbitration errors
observed before the CAN packet timed out, or was transmitted successfully.

If the timeout_ms value is reached before any response is collected from the port,
the function will return KM_CAN_ASYNC_TIMEOUT.

CAN Write (km_can_write)

 int km_can_write (Komodo komodo,
 km_can_ch_t channel,
 u08 flags,
 const km_can_packet_t *packet,
 int num_bytes,
 const u08 *data,
 u32 *arbitration_count);

Issue a packet to be transmitted on the CAN bus, and block until a response is recieved.

Arguments

komodo handle to an enabled Komodo port

channel the CAN channel on which to submit the
packet

flags See flag field as described in Section
5.6.2.11

packet pre-allocated structure containing CAN
packet parameters

num_bytes size of the data array

data pre-allocated array containing CAN packet
data

arbitration_count filled with the number of transmissions
failed due to arbitration loss

Required Features

CONTROL must have been acquired on the selected channel.

Komodo CAN Interface User Manual

53

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

KM_CAN_ASYNC_PENDING Uncollected asynchronously submitted
packets must be collected

Details

This function simply acts as a wrapper for the asynchronous submit and collect
functions.

km_can_async_submit(komodo, channel, flags,
 packet, num_bytes, data);
km_can_async_collect(komodo, KM_TIMEOUT_INFINITE,
 arbitration_count);

The CAN packet is submitted asynchronously, and km_can_async_collect is
called with KM_TIMEOUT_INFINITE to block indefinitely until a response is
received.

A KM_CAN_ASYNC_PENDING error is returned if there are any uncollected
asynchronously submitted packets. Packets submitted with
km_can_async_submit should always be collected using
km_can_async_collect.

5.7 GPIO Interface

5.7.1 GPIO Notes

1. When the GPIO pin is configured as an input, the input change event reporting is
limited to one edge transition every 20 us across all pins.

Komodo CAN Interface User Manual

54

2. When the GPIO pin is configured as an output controlled by a CAN bus event, the
pin will toggle with a pulse duration of about 200 ns.

5.7.2 GPIO Interface

Configure GPIO Input Pin (km_gpio_config_in)

 int km_gpio_config_in (Komodo komodo,
 u08 pin_number,
 u08 bias,
 u08 trigger);

Configure a GPIO input pin.

Arguments

komodo handle of a Komodo port

pin_number GPIO input pin configuration enumerated type, as
described in Table 17

bias voltage bias enumerated type, as described in Table
18

trigger trigger condition enumerated type, as described in
Table 19

Table 17 : GPIO pin configuration values

KM_GPIO_PIN_1_CONFIG GPIO Pin 1

KM_GPIO_PIN_2_CONFIG GPIO Pin 2

KM_GPIO_PIN_3_CONFIG GPIO Pin 3

KM_GPIO_PIN_4_CONFIG GPIO Pin 4

KM_GPIO_PIN_5_CONFIG GPIO Pin 5

KM_GPIO_PIN_6_CONFIG GPIO Pin 6

KM_GPIO_PIN_7_CONFIG GPIO Pin 7

KM_GPIO_PIN_8_CONFIG GPIO Pin 8

Table 18 : GPIO input pin voltage bias values

KM_PIN_BIAS_TRISTATE No modification to input voltage

KM_PIN_BIAS_PULLUP Pulls up input voltage using high impedance resistor to 3.3 V

KM_PIN_BIAS_PULLDOWN Pulls down input voltage using high impedance resistor to GND

Table 19 : GPIO input pin trigger condition values

Komodo CAN Interface User Manual

55

KM_PIN_TRIGGER_NONE Do not report pin changes

KM_PIN_TRIGGER_RISING_EDGE Report change on a rising input edge

KM_PIN_TRIGGER_FALLING_EDGE Report change on a falling input edge

KM_PIN_TRIGGER_BOTH_EDGES Report change on either a rising or falling input edge

Required Features

GPIO CONFIG must have been acquired.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

The trigger parameter defines when an input change event is reported by the
km_can_read function and is not related to triggering the Komodo interface to start
collecting data. As an example, if an input pin is configured to
KM_PIN_TRIGGER_FALLING_EDGE, an input change event will only be reported on
the falling edge and not the rising edge.

Configure GPIO Output Pin (km_gpio_config_out)

 int km_gpio_config_out (Komodo komodo,
 u08 pin_number,
 u08 drive,
 u08 source);

Configure a GPIO output pin.

Arguments

komodo handle of a Komodo port

pin_number GPIO output pin configuration enumerated type, as
described in Table 17

drive voltage drive enumerated type as described in Table
20

source pin control source enumerate type as described in
Table 21

Komodo CAN Interface User Manual

56

Table 20 : GPIO output pin voltage drive values

KM_PIN_DRIVE_NORMAL Active 3.3 V; Inactive GND

KM_PIN_DRIVE_INVERTED Active GND; Inactive 3.3 V

KM_PIN_DRIVE_OPEN_DRAIN Active GND; Inactive FLOAT

KM_PIN_DRIVE_OPEN_DRAIN_PULLUP Equivalent to KM_PIN_OPEN_DRAIN
with a high impedance pullup

Table 21 : GPIO output pin control source values

KM_PIN_SRC_SOFTWARE_CTL Controlled using km_gpio_set.

KM_PIN_SRC_ALL_ERR_CAN_A Active on any CAN A error

KM_PIN_SRC_BIT_ERR_CAN_A Active on CAN A Bit Error

KM_PIN_SRC_FORM_ERR_CAN_A Active on CAN A Form Error

KM_PIN_SRC_STUFF_ERR_CAN_A Active on CAN A Stuff Error

KM_PIN_SRC_OTHER_ERR_CAN_A Active on CAN A Other Error

KM_PIN_SRC_ALL_ERR_CAN_B Active on any CAN B error

KM_PIN_SRC_BIT_ERR_CAN_B Active on CAN B Bit Error

KM_PIN_SRC_FORM_ERR_CAN_B Active on CAN B Form Error

KM_PIN_SRC_STUFF_ERR_CAN_B Active on CAN B Stuff Error

KM_PIN_SRC_OTHER_ERR_CAN_B Active on CAN B Other Error

KM_PIN_SRC_ALL_ERR_CAN_BOTH Active on any CAN A or B error

KM_PIN_SRC_BIT_ERR_CAN_BOTH Active on CAN A or B Bit Error

KM_PIN_SRC_FORM_ERR_CAN_BOTH Active on CAN A or B Form Error

KM_PIN_SRC_STUFF_ERR_CAN_BOTH Active on CAN A or B Stuff Error

KM_PIN_SRC_OTHER_ERR_CAN_BOTH Active on CAN A or B Other Error

Required Features

GPIO CONFIG must have been acquired.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Komodo CAN Interface User Manual

57

Details

None.

Get (km_gpio_get)

 int km_gpio_get (Komodo komodo);

Get the value of current GPIO pins as a bitmask.

Arguments

komodo handle of a Komodo port

Required Features

None.

Return Value

Returns the current value of all GPIO pins, input and output.

Specific Error Codes

None.

Details

None.

Set (km_gpio_set)

 int km_gpio_set (Komodo komodo, u08 value, u08 mask);

Set the value of current GPIO outputs.

Arguments

komodo handle of a Komodo port

value value to which to set the pins provided in mask

mask a bitmask specifying which outputs should be set to the
supplied value (see Table 22).

Table 22 : GPIO pin mask values

KM_GPIO_PIN_1_MASK GPIO Pin 1 Mask

Komodo CAN Interface User Manual

58

KM_GPIO_PIN_2_MASK GPIO Pin 2 Mask

KM_GPIO_PIN_3_MASK GPIO Pin 3 Mask

KM_GPIO_PIN_4_MASK GPIO Pin 4 Mask

KM_GPIO_PIN_5_MASK GPIO Pin 5 Mask

KM_GPIO_PIN_6_MASK GPIO Pin 6 Mask

KM_GPIO_PIN_7_MASK GPIO Pin 7 Mask

KM_GPIO_PIN_8_MASK GPIO Pin 8 Mask

Required Features

CONTROL must have been acquired.

Return Value

A Komodo status code of KM_OK is returned on success or an error code as
detailed in Table 23.

Specific Error Codes

None.

Details

This function sets the value of any GPIO pins configured as software controlled
outputs. Any attempts to set a pin configured as either an input or as a non-
software-controlled output will be silently ignored.

5.8 Error Codes

Table 23 : Komodo API Error Codes

Literal Name Value km_status_string() return value

KM_OK 0 ok

KM_UNABLE_TO_LOAD_LIBRARY -1 unable to load library

KM_UNABLE_TO_LOAD_DRIVER -2 unable to load USB driver

KM_UNABLE_TO_LOAD_FUNCTION -3 unable to load binding function

KM_INCOMPATIBLE_LIBRARY -4 incompatible library version

KM_INCOMPATIBLE_DEVICE -5 incompatible device version

KM_COMMUNICATION_ERROR -6 communication error

Komodo CAN Interface User Manual

59

KM_UNABLE_TO_OPEN -7 unable to open device

KM_UNABLE_TO_CLOSE -8 unable to close device

KM_INVALID_HANDLE -9 invalid device handle

KM_CONFIG_ERROR -10 configuration error

KM_PARAM_ERROR -11 parameter error

KM_FUNCTION_NOT_AVAILABLE -12 function not available

KM_FEATURE_NOT_ACQUIRED -13 necessary feature not acquired

KM_NOT_DISABLED -14 port must be disabled

KM_NOT_ENABLED -15 port must be enabled

KM_CAN_READ_EMPTY -101 CAN nothing to read

KM_CAN_SEND_TIMEOUT -102 CAN send timed out

KM_CAN_SEND_FAIL -103 CAN send failed

KM_CAN_ASYNC_EMPTY -104 CAN no responses available

KM_CAN_ASYNC_MAX_REACHED -105 CAN async submit limit reached

KM_CAN_ASYNC_PENDING -106 CAN async packets pending

KM_CAN_ASYNC_TIMEOUT -107 CAN async collect timed out

KM_CAN_AUTO_BITRATE_FAIL -108 Unable to detect a bitrate

Komodo CAN Interface User Manual

60

6 Legal / Contact

6.1 Disclaimer

All of the software and documentation provided in this datasheet, is copyright Total
Phase, Inc. ("Total Phase"). License is granted to the user to freely use and distribute
the software and documentation in complete and unaltered form, provided that the
purpose is to use or evaluate Total Phase products. Distribution rights do not include
public posting or mirroring on Internet websites. Only a link to the Total Phase download
area can be provided on such public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general,
incidental, or consequential damages arising from the use of its site, the software or
documentation downloaded from its site, or any derivative works thereof, even if Total
Phase or distributors have been advised of the possibility of such damage. The software,
its documentation, and any derivative works is provided on an "as-is" basis, and thus
comes with absolutely no warranty, either express or implied. This disclaimer includes,
but is not limited to, implied warranties of merchantability, fitness for any particular
purpose, and non-infringement. Total Phase and distributors have no obligation to
provide maintenance, support, or updates.

Information in this document is subject to change without notice and should not be
construed as a commitment by Total Phase. While the information contained herein is
believed to be accurate, Total Phase assumes no responsibility for any errors and/or
omissions that may appear in this document.

6.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life
support devices or systems include, but are not limited to, surgical implants, medical
systems, and other safety-critical systems in which failure of a Total Phase product could
cause personal injury or loss of life. Should a Total Phase product be used in such an
unauthorized manner, Buyer agrees to indemnify and hold harmless Total Phase, its
officers, employees, affiliates, and distributors from any and all claims arising from such
use, even if such claim alleges that Total Phase was negligent in the design or
manufacture of its product.

6.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have
support-related questions, please go to the Total Phase website. For sales inquiries,
please contact sales@totalphase.com.

Komodo CAN Interface User Manual

61

http://www.totalphase.com/
mailto:sales@totalphase.com

©2011-2014 Total Phase, Inc.
All rights reserved.

Komodo CAN Interface User Manual

62

	Komodo™ Interfaces
	1 General Overview
	1.1 CAN Background
	1.1.1 CAN History
	1.1.2 CAN Theory of Operation
	1.1.3 CAN Features and Benefits
	1.1.4 CAN Drawbacks
	1.1.5 CAN References

	2 Hardware Specifications
	2.1 Connector Specification
	2.1.1 D-Sub Connector
	2.1.2 Terminal Block Connector
	2.1.3 GPIO Connector
	2.1.4 USB Connector

	2.2 GPIO
	2.2.1 GPIO Configuration
	2.2.2 GPIO Signaling

	2.3 CAN Signal Descriptions
	2.3.1 GND
	2.3.2 CAN-
	2.3.3 CAN+
	2.3.4 V+
	2.3.5 SHLD
	2.3.6 No Connect
	2.3.7 Powering Downstream Devices

	2.4 LED Indicators
	2.5 Signal Levels/Voltage Ratings
	2.5.1 Logic Levels
	2.5.2 ESD protection
	2.5.3 Input Current
	2.5.4 Drive Current
	2.5.5 Capacitance

	2.6 CAN Signaling Characteristics
	2.6.1 Speed

	2.7 Komodo Device Power Consumption
	2.8 USB 2.0
	2.9 Temperature Specifications

	3 Software
	3.1 Compatibility
	3.1.1 Overview
	3.1.2 Windows Compatibility
	3.1.3 Linux Compatibility
	3.1.4 Mac OS X Compatibility

	3.2 Windows USB Driver
	3.2.1 Driver Installation
	3.2.2 Driver Removal

	3.3 Linux USB Driver
	3.3.1 UDEV
	3.3.2 USB Hotplug
	3.3.3 World-Writable USB Filesystem

	3.4 Mac OS X USB Driver
	3.5 USB Port Assignment
	3.5.1 Detecting Ports

	3.6 Komodo Dynamically Linked Library
	3.6.1 DLL Philosophy
	3.6.2 DLL Location
	3.6.3 DLL Versioning

	3.7 Rosetta Language Bindings: API Integration into Custom Applications
	3.7.1 Overview
	3.7.2 Versioning
	3.7.3 Customizations

	3.8 Application Notes
	3.8.1 Asynchronous Messages
	3.8.2 Receive Saturation
	3.8.3 Threading
	3.8.4 USB Scheduling Delays

	4 Firmware
	4.1 Field Upgrades
	4.1.1 Upgrade Philosophy
	4.1.2 Upgrade Procedure

	5 API Documentation
	5.1 Introduction
	5.2 General Data Types
	5.3 Notes on Status Codes
	5.4 Notes on Features
	5.5 General
	5.5.1 Interface
	Find Devices (km_find_devices)
	Find Devices (km_find_devices_ext)
	Open a Komodo port (km_open)
	Open a Komodo port (km_open_ext)
	Close a Komodo port (km_close)
	Get Supported Features (km_features)
	Get Unique ID (km_unique_id)
	Status String (km_status_string)
	Version (km_version)
	Sleep (km_sleep_ms)
	Acquire Features (km_acquire)
	Release Features (km_release)
	Query Samplerate (km_get_samplerate)
	Set Komodo Timeout (km_timeout)
	Set Komodo Latency (km_latency)

	5.6 CAN Interface
	5.6.1 CAN Notes
	5.6.2 General CAN
	Configure CAN (km_can_configure)
	Set CAN Bus Timeout (km_can_bus_timeout)
	Set CAN Bitrate (km_can_bitrate)
	Auto-detect CAN Bitrate (km_can_auto_bitrate)
	Auto-detect CAN Bitrate Extended (km_can_auto_bitrate_ext)
	Set Target Power (km_can_target_power)
	Port Enable (km_enable)
	Port Disable (km_disable)
	Query CAN Bus State (km_can_query_bus_state)
	CAN Read (km_can_read)
	Asynchronous CAN Submit (km_can_async_submit)
	Asynchronous CAN Collect (km_can_async_collect)
	CAN Write (km_can_write)

	5.7 GPIO Interface
	5.7.1 GPIO Notes
	5.7.2 GPIO Interface
	Configure GPIO Input Pin (km_gpio_config_in)
	Configure GPIO Output Pin (km_gpio_config_out)
	Get (km_gpio_get)
	Set (km_gpio_set)

	5.8 Error Codes

	6 Legal / Contact
	6.1 Disclaimer
	6.2 Life Support Equipment Policy
	6.3 Contact Information

