

S2013C

Single-Channel PXIe Precision Source Meter

Version 1.5

Product Description

The S2013C Precision source meter is compact and cost-effective PXIe Source/Measure Unit (SMU) with the capability to source and measure both voltage and current. S2013C have Maximum ± 200 V, ± 1 A DC, ± 3 A pulsed and constant 20W power sourcing capability, supports conventional SMU SCPI commands for easy test code migration. Support Most of standards PXIe chassis, support multi-card synchronization, these features improve efficiency and lower the cost of ownership when integrating the SMUs into systems for production test.

Key Features

Feature	Benefit
Precision-fast Control	Users can adjust the related parameters based on the load
	characteristics to obtain precision, and fast output
(Adaptive PFC) system	characteristics
Integrated 4-quadrant sourcing	Easily and accurately measure current and voltage using a
and measuring capabilities	single Card without the need to manually change any
and measuring capabilities	connections
Measurement range: ±200 V,	Easily LIV sweep test with dual Cards
±1 A (DC), ±3 A (pulsed)	Lasity Liv sweep test with dual eards
Source and measurement	Can make low-level measurements using a low-cost High-
resolution down to 100 fA and	density PXIe SMU that were previously only possible using a
100 nV	more expensive semiconductor device analyzer
Fast measurement	Up to 1M ADC sampling rate, NPLC and sampling rate optional

	setting
Free guick V/I control coftware	Can make measurements remotely from a PC without the
Free quick V/I control software	need to program
Built-in DIO	Easy to realize the synchronization of S2013C and external
Built-in Dio	instrument without additional Synchronous control card
Standard PXIe Module,	Easily expand to multi-channel and integration into rack and
Applicable to PXIe chassis	stack systems

Technical Specification

Specification conditions

Temperature :23 °C \pm 5 °C

Humidity:30% to 70% RH

After 60 minutes warm-up, ambient temperature changes less than \pm 3 $\,^{\circ}\text{C}$

Calibration period:1 Year

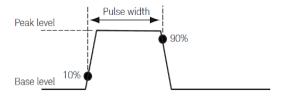
Measurement speed: 1PLC (power line cycle)

Voltage Programming and Measurement specifications

Voltage accuracy	Dango	Programming Accuracy (1 Year)		Typical Noise (RMS)
	Range	resolution	± (% reading+ offset)	0.1 Hz-10 Hz
	±200 V	100 μV	0.03%+10 mV	0.4 mV
	±20 V	10 μV	0.03%+1 mV	50 μV
	±6 V	1 μV	0.03%+0.4 mV	9 μV

	±0.6 V	100 nV	0.03%+100 μV	2 μV					
Temperature	±/0.15 × 24								
coefficient	(0.15 × a0	\pm (0.15 × accuracy)/°C (0°C-18°C,28°C-50°C)							
Settling time	<50μs (typic	<50μs (typical)							
< $\pm 0.1\%$ (Typical. Normal mode. Step is 10 % to 90 % range, full r									
Overshoot	resistive load)								
Noise 10 Hz-20 MHz	20 V voltage source,1 A resistive load, <5 mVrms								

Current Programming and Measurement specifications


	Dange	Programming	Accuracy (1 Year)	Typical Noise (RMS)	
	Range	resolution	± (% reading+ offset)	0.1 Hz-10 Hz	
	±3 A¹	1 μΑ	0.03% + 2 mA	20 μΑ	
	±1 A	100 nA	0.03% + 90 μΑ	4 μΑ	
Current accuracy	±100 mA	10 nA	0.03% + 9 μΑ	600 nA	
Current accuracy	±10 mA	1 nA	0.03% + 900 nA	60 nA	
	±1 mA	100 pA	0.03% + 90 nA	6 nA	
	±100 μA	10 pA	0.03% + 9 nA	700 pA	
	±10 μA	1 pA	0.03% +1 nA	80 pA	
	±1 μA²	100 fA	0.03% + 200 pA	20 pA	
Temperature	±(0.15 × accuracy)/°C (0°C-18°C,28°C-50°C)				
coefficient					
Settling time	<100μs (typical)				

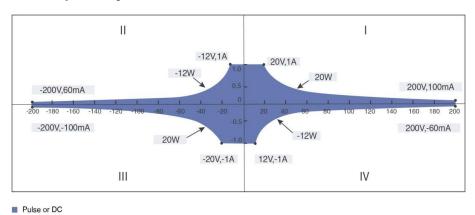
0 1 1	< $\pm 0.1\%$ (Typical. Normal mode. Step is 10 % to 90 % range, full range,
Overshoot	resistive load)

^{1, 3} A range is available only for pulse mode, accuracy specifications for 3 A range are typical.

Pulse source specifications (4W)

Minimum programmable pulse width	100 μs
Pulse width programming resolution	1 μs
Pulse width programming accuracy	±10 μs
Pulse width jitter	2 μs
Dulas visidalis definition	The time from 10 % leading to 90 % trailing edge as
Pulse width definition	follows

Item	Maximums	Maximum pulse width	Maximum duty cycle
1	0.1 A/200 V	DC, no limit	100%
2	1 A/20 V	DC, no limit	100%
3	3 A/66.6 V	1 ms	5%
4	3 A/160 V	400 μs	2%

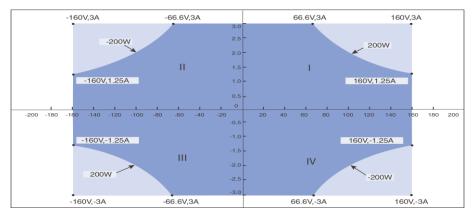

Typical Pulse Performance(4W)

^{2,} Low Current Measurements, Triaxial Cable is recommended to connect: HI connect to core cable, Guard connects to inner shield, outer shield connects to protective ground, LO connect to core cable, inner shield not connect, and outer shield connect to protective ground. Triaxial Cable rated insulation voltage is not less than 250V.

Source	Maximum output	Typical rise time ¹	Typical Settling Time ²	Test load
Voltago	160 V	800μs	1.2 ms	NO load
Voltage 5 V		40 μs	100 μs	NO load
	3A~1 mA	90 μs	250 μs	Full load ³
Current	100 μΑ ~10 μΑ	120 μs	400 μs	Full load ³
	1 μΑ	800 μs	1.2 ms	Full load ³

^{1,} Leading edge, the time from 10 % leading to 90 % leading

DC I-V Out capability



CONTRACTOR CONTRACTOR

Pulse I-V Out capability

^{2,} The time required from Pulse out 0 to reach within 1 % of final value

^{3,} Test condition: Normal, resistive load 6V maximum output

Pulse only maximum pulse on time 1ms,maximum duty cycle 5%

Pulse only maximum pulse on time 400 us maximum duty cycle 2%

Typical output settling time

		Output set	tling time¹			
Source	Range	Fast ²	Normal	Slow	Condition	
	200 V	<500 μs	<1 ms	<2 ms	Time required to reach within	
Voltago	20 V	<60 μs	<100 μs	<600 μS	0.1 % of final value at open load	
Voltage 6	6 V	<60 μs	<100 μs	<300 μs	condition. Step is 10 % to 90 %	
	0.6 V	<50 μs	<50 μs	<50 μs	range	
	3 A~1 mA	<50 μs	<100 μs	<0.8 ms	Time required to reach within	
Command	100μΑ~10	<100 ···	<150 ···	<0.8 ms	0.1 % (0.3 % for 3 A range) of final	
Current	μΑ	<100 μs	<150 μs	~0.0 IIIS	value at short condition. Step is	
	1 μA <1 ms <1 ms		10 % to 90 % range			

^{1,}Output transition speed: Fast, Normal, Slow. Users can adjust the APFC parameters based on the load characteristics to obtain precision, and fast output characteristics

Sampling rate and NPLC setting

^{2,} Slow mode is recommended for overshoot sensitive equipment, Fast mode may have overshoot on output in some condition

Setting	Range
NPLC	0.00005 PLC ~ 10 PLC
Sampling Rate	5 sps ~ 1 Msps

Derating accuracy with PLC setting< 1 PLC

Add % of range using the following table for measurement with PLC < 1 $\,$

DI C	Range							
PLC	600 mV 6 V		20 V	200 V	1 μΑ	10 μΑ	100 μA to 100 mA	1 A to 3 A
0.1	0.02%	0.01%	0.01%	0.01%	0.02%	0.01%	0.01%	0.01%
0.01	0.3%	0.3%	0.03%	0.02%	0.2%	0.04%	0.02%	0.02%
0.001	3.2%	3.2%	0.04%	0.1%	2.5%	0.4%	0.03%	0.03%

Supplemental characteristics

Sensing Modes	2-wire or 4-wire (Remote-sensing) connections
Maximum sense lead resistance	1 kΩ for rated accuracy
Max voltage between Force and	21/
Sense	2 V
Maximum output voltage in output	1050/
connector	>range 105%
Sweep	Sweep step time: from 20 µs to 16 s, Max: 8K point
Auto range	Support, turn off output is recommended for overshoot
	sensitive equipment before range change

Source delay	Support, It is recommended that users set appropriate
	source delay to obtain higher accuracy
Over temperature protection	The output will be turned off (also disable operation)
	when the SMU internal temperature is detected higher
	than 85 degrees. When the temperature returns to less
	than 65 degrees, operation recover
Other abnormal protection	Power reset, recover operation or hardware damage

WARNING: here are potentially hazardous voltages ($\pm 210\,\text{V}$) present at the HI, Sense HI, and Guard terminals of this instrument. To prevent electrical shock, the safety precaution must be done before turn on the instrument. Never connect the Guard terminal to any output, including chassis ground, or output LO, doing so will damage the instrument

Environmental specifications

Environment For use in indoor facilities	
--	--

Operating	0 °C to +50 °C, 30 % to 70 % non-condensing
Storage	-30 °C to 70 °C, 10 % to 90 % non-condensing
Dimensions (mm)	210*130*20
Weight	Net weight 0.46Kg
Power	Full Load 12V/3.5A;3.3V/0.5A;5V/0.01A
Altitude	Operating: 0 m to 2000 m, Storage: 0 m to 4600 m
Warm-up	1 hour

Ordering information

Output connector, quick reference, U disk (including PDF manuals, quick I/V Measurement Software and drivers)

Model number	
S2013C	Single Channel PXIe Precision Source Meter

Contact us

Mail

sales@semight.com

Address

No. 1508, Xiangjiang Road, Suzhou New District (SND), Jiangsu, China

Web

Visit www.semight.com for more information.

 $^{{}^{\}star}\mathsf{This}$ information is subject to change without notice.