

S2027H

Single-Channel Precision Source Meter

Version 1.0

Product Description

The S2027H precision source meter is compact and cost-effective bench-top Source/Measure Units (SMUs) with the capability to source and measure both voltage and current. These capabilities make the S2027H ideal for a wide variety of IV (current versus voltage) measurement tasks that require both high resolution and accuracy.

The S2027H provides best-in-class performance for a modest price. They have broad voltage (± 60 V) and current (± 3 A DC and ± 10 A pulsed) sourcing capability, excellent precision (minimum 100 fA/100 nV measuring resolution) and possess a superior color LCD graphical user interface (GUI). These features improve efficiency and lower the cost of ownership when integrating the SMUs into systems for production test.

Key Features

Feature	Benefit
Integrated 4 guadrant sourcing and	Easily and accurately measure current and voltage using
Integrated 4-quadrant sourcing and	a single instrument without the need to manually change
measuring capabilities	any connections
	A single SMU product covers both high voltage and high
Measurement range: ±60 V, ±3A	current measurement needs, allowing for more
(DC), ± 10 A (pulsed)	standardization and simplifying inventory and support
	concerns
Source and massurement resolution	Can make low-level measurements using a low-cost
Source and measurement resolution	bench-top SMU that were previously only possible using
down to 100 fA and 100 nV	a more expensive semiconductor device analyzer
Fast was a surrament	Up to 1M ADC sampling rate, NPLC and sampling rate
Fast measurement	optional setting
User-friendly front panel GUI with	Can quickly and easily perform measurements and
5.0 inch capacitive touchscreen	display data on the front panel, thereby greatly speeding
supports both graphical and	up interactive test, characterization and debug
numerical view modes	operations

From guidk\//Leantral coftware	Can make measurements remotely from a PC without the
Free quick V/I control software	need to program
Supports both conventional and default SCPI commands	Conventional SCPI commands provide some
	compatibility with older SMU code (such as Keithley 2400
	series) to minimize code conversion work
Marks with DVIa shassis	Easily integrate multi-channel expansion into rack and
Works with PXIe chassis	stack systems
Small form factor with USB3.0, LAN	Easy integration into rack and stack systems

Technical Specification

Temperature :23 °C \pm 5 °C

Humidity:30% to 70% RH

After 60 minutes warm-up, ambient temperature changes less than \pm 3 $^{\circ}\text{C}$

Calibration period:1 Year

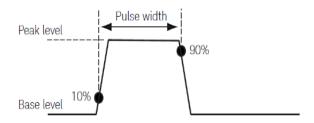
Measurement speed: 1PLC (power line cycle)

Voltage source/ measurement specifications

				ıracy (1 Year)	Typical	Noise
Voltage accuracy	Range	Programming resolution	±	(%	reading+	(RMS)	
		resolution	offse	et)		0.1 Hz-10Hz	

	±60 V	10 μV	0.02%+3 mV	200 μV		
	±6V	1 μV	0.02%+0.3 mV	60 μV		
	±0.6V	100 nV	0.02%+50 μV	20 μV		
Temperature coefficient	±(0.15 ×	±(0.15 × accuracy)/°C (0°C-18°C,28°C-50°C)				
Settling time	<50μs (typical)					
2 marks at	< $\pm 0.1\%$ (Typical. Normal mode. Step is 10 % to 90 %			to 90 % range, full		
Overshoot	range, resistive load)					
Noise 10 Hz-20 MHz	6 V voltage source, 3A resistive load, <5 mVrms					

Current source/ measurement specifications


	Danas	Programming	Accuracy (1 Year)	Typical Noise (RMS)
	Range	resolution	± (% reading+ offset)	0.1 Hz-10 Hz
	±10 A¹	1	0.03% + 2mA	20.44
	±3 A	1 μΑ	0.03% + 2IIIA	20 μΑ
Current	±1 A	100 nA	0.03% + 90 μΑ	3 μΑ
Current	±100 mA	10 nA	0.03% + 9 μΑ	200 nA
accuracy	±10 mA	1 nA	0.03% + 900 nA	20 nA
	±1 mA	100 pA	0.03% + 90 nA	2 nA
	±100 μΑ	10 pA	0.03% + 9 nA	200 pA
	±10 μΑ	1 pA	0.03% +1 nA	30 pA
	±1 μA ² 10	100 fA	0.03% + 200 pA	5 pA

Temperature	±(0.15 × accuracy)/°C (0°C-18°C,28°C-50°C)	
coefficient		
Settling time	<100μs (typical)	
	< $\pm 0.1\%$ (Typical. Normal mode. Step is 10 % to 90 % range, full range, resistive	
Overshoot	load)	

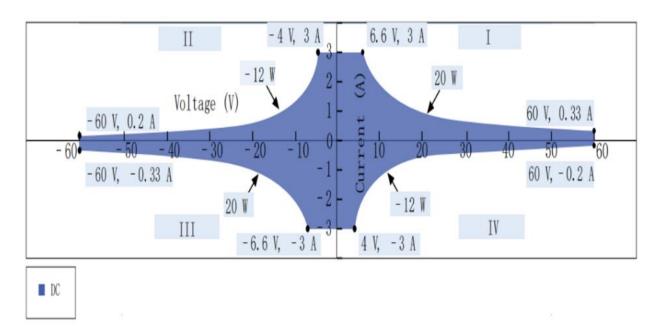
^{1, 10} A range is available only for pulse mode, accuracy specifications for 10 A range are typical.

Pulse source specifications (4W)

Minimum programmable pulse width	100 μs
Pulse width programming resolution	1 μs
Pulse width programming accuracy	±10 μs
Pulse width jitter	2 μs
Dulas width definition	The time from 10 % leading to 90 % trailing edge as
Pulse width definition	follows

Item	Maximums	Maximum pulse width	Maximum duty cycle
1	0.4A/50 V	DC, no limit	100%
2	1A/20 V	DC, no limit	100%
3	3A/6.6 V	DC, no limit	100%
4	10A/20 V	1 ms	5%

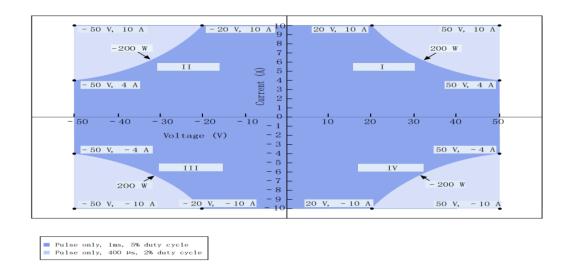
^{2,} Low Current Measurements, Triaxial Cable is recommended to connect: HI connect to core cable, Guard connects to inner shield, outer shield connects to protective ground, LO connect to core cable, inner shield not connect, and outer shield connect to protective ground. Triaxial Cable rated insulation voltage is not less than 250V.


5	10A/50 V	400 μs	2%

Typical Pulse Performance(4W)

Source	Maximum output	Typical rise time ¹	Typical Settling Time ²	Test load
Voltare	50 V	250 μs	400 μs	NO load
Voltage	5 V	40 μs	100 μs	NO load
	10Α~100 μΑ	90 μs	250 μs	Full load ³
Current	10 μΑ	120 μs	300 μs	Full load ³
	1 μΑ	300 μs	600 μs	Full load ³

^{1,} Leading edge, the time from 10 % leading to 90 % leading


DC I-V Out capability

^{2,} The time required from Pulse out 0 to reach within 1 % of final value

^{3,} Test condition: Normal, resistive load 6V maximum output

Pulse I-V Output capability

Typical output settling time

Source Range		Output settling time ¹			Condition
Source	Range	Fast ²	Normal	Slow	Condition
	60 V	<120 μs	<300 μs	<1 ms	Time required to reach within 0.1 % of
Voltage	6 V	<30 μs	<50 μs	<300 μs	final value at open load condition. Step is
	0.6V	<30 μs	<50 μs	<300 μs	10 % to 90 % range
	3 Α~100 μΑ	<50 μs	<100 μs	<0.8 ms	Time required to reach within 0.1 $\%$ (0.3 $\%$
Current	10 μΑ	<100 μs	<150 μs	<0.8 ms	for 3 A range) of final value at short
	1 μΑ	<300 μs	<400 μs	<1 ms	condition. Step is 10 % to 90 % range

^{1,}Output transition speed: Fast, Normal, Slow. Users can adjust the APFC parameters based on the load characteristics to obtain precision, and fast output characteristics

Sampling rate and NPLC setting

^{2,} Slow mode is recommended for overshoot sensitive equipment, Fast mode may have overshoot on output in some condition

Setting	Range
NPLC	0.00005 PLC ~ 10 PLC
Sampling Rate	5 sps ~ 1 Msps

Derating accuracy with PLC setting< 1 PLC

Add % of range using the following table for measurement with PLC < 1 $\,$

PLC	Range						
	600 mV	6V	60 V	1 μΑ	10 μΑ	100 μA to 100 mA	1 A to 3A
0.1	0.02%	0.01%	0.01%	0.02%	0.01%	0.01%	0.01%
0.01	0.3%	0.03%	0.02%	0.2%	0.04%	0.02%	0.02%
0.001	3.2%	0.4%	0.1%	2.5%	0.4%	0.03%	0.03%

Supplemental characteristics

Sensing Modes	2-wire or 4-wire (Remote-sensing) connections	
Maximum sense lead	1 kΩ for rated accuracy	
resistance:		
Max voltage between Force	2 V	
and Sense		
Maximum output voltage in	>range 105% (60V range>60.5V)	
output connector		
DC floating voltage	Max ±150 V DC between low force and chassis ground	
Sweep	Sweep step time: from 20 μs to 16 s, Max: 8K point	

Auto rango	Support, turn off output is recommended for overshoot		
Auto range	sensitive equipment before range change		
Source delay	Support, It is recommended that users set appropriate source		
Source delay	delay to obtain higher accuracy		
	The output will be turned off (also disable operation) when the		
Over temperature protection	SMU internal temperature is detected higher than 85 degrees.		
Over temperature protection	When the temperature returns to less than 65 degrees,		
	operation recover		
Other abnormal protection	Power reset, recover operation or hardware damage		

WARNING: here are potentially hazardous voltages (\pm 60.5 V) present at the HI, Sense HI, and Guard terminals of this instrument. To prevent electrical shock, the safety precaution must be done before turn on the instrument. Never connect the Guard terminal to any output, including chassis ground, or output LO, doing so will damage the instrument.

Communication port

LAN	1000BASE-T / 100BASE-T	
HCD	USB 3.0 HOST (front)	
USB	USB 3.0 DEVICE (back)	

Environmental specifications

Environment	For use in indoor facilities
Operating	0 °C to +50 °C, 30 % to 70 % non-condensing

Storage	-30 °C to 70 °C, 10 % to 90 % non-condensing		
Altitude	Operating: 0 m to 2000 m, Storage: 0 m to 4600 m		
Damer	LINE: 100-240VAC, 50/60Hz, 250W		
Power	FUSE: T3.15AL 250 VAC		
Warm-up	1 hour		
Disconsions (mm)	404.5*217.5*105.5 (with foot pad/handle/ rotary Knob)		
Dimensions (mm)	446*233*112 (with sheath)		
Weight	Net weight 5.2Kg		

Front Panel

Display	5.0" TFT color display (800x480), Capacitive touchscreen	
Hardkove	Home, Menu, Exit, Enter, Trigger, Up, Down power on, output	
Hardkeys	on/off, rotary Knob	
Softkeys	LCD Mapping function keys	
Connectivity	USB Host, output, ground	

Rear panel

C	::	OUTDUT interfered LAN LICE devices AC explort Consumed
Coni	nectivity	OUTPUT interface, LAN, USB device, AC socket, Ground

Ordering information

Power cable, USB cable, Output connector, quick reference, U disk (including PDF manuals, quick

I/V Measurement Software and drivers)

Model number		
S2027H	Single-Channel Precision Source Meter, pulser	

Contact us

Mail

sales@semight.com

Address

No. 1508, Xiangjiang Road, Suzhou New District (SND), Jiangsu, China

Web

Visit www.semight.com for more information.

*This information is subject to change without notice.